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Preface

What is this about?

When ordinary people talk to geneticists, the questions they often most want to have answered
are: “How much does genetics matter for behavior?” and “Is race real?”. These will sometimes
fold together to form a third question: “Are racial differences in behavior and outcomes
explained by genetics?”. Contrary to popular belief, all three questions have been heavily
debated for decades within the fields of quantitative, population, and behavioral genetics. In
many cases these questions are unanswerable or ill-posed, but the field has expanded great
effort into understanding why they are unanswerable, what one can expect from theory, and what
is answerable with data. Millions of individuals have been genotyped to answer questions like
“how much of your educational attainment is in your genes?” or “how do the effects of genetic
variants differ across populations?”. However, many of these discussions happen behind journal
paywalls or in single sentence news quotes and do not filter down in a coherent way to the
general public. The goal of this document is to distill the recent findings from molecular
studies of behavioral traits and group differences in a way that is both comprehensive and
broadly understandable. In the end, my hope is that the lay reader has the tools and general
understanding to seek out accurate answers to the complicated questions in genetics. For
readers with expertise in genetics, my hope is that this document will tie together concepts that
still typically reside in individual papers and supplementary notes into a bigger whole and identify
important limitations and open questions.

Why a molecular perspective?

Molecular data (i.e. directly measured genetic variation) provides opportunities to use the subtle
variations between individuals and groups to better distinguish correlation from causation. When
we know who has which genetic variant we can: look at unrelated individuals that are unlikely to
directly share environments and ask if subtle differences in their genetic variability relate to their
phenotype; look at siblings and quantify if subtle differences in the specific alleles they share
relate to their outcomes; use genetic data from students who experienced some intervention –
say, staying in school for an extra year – and ask if subtle genetic differences in them or their
families influenced the effectiveness of the intervention; etc and so on. Having tools to
distinguish correlations (patterns that we tend to observe in the world) from causes (factors that
influence changes in the world) is critical to understanding how our world and society works and
has been greatly enabled by molecular studies (Lewontin 2006).

Molecular genetics is also simply becoming a bigger part of life. Ordinary people are often
experiencing genetics through commercial services quantifying cancer risk genes, polygenic
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scores, and genetic ancestry. There is a need for context and clarity on what these molecular
tools can and cannot tell us.

A word on not being an easy mark

Large-scale genetic studies present a genuine opportunity to expand our understanding of the
world. But they also involve the use of complicated statistical techniques, large datasets that
often can’t be manually inspected, and opaque quantities. Naturally, this has created space for
scammers and bigots who can exploit the complexity of data. Just as it is important to distinguish
correlations from causes, it is important not to be an easy mark for con artists. Spend some time
discussing these questions out in the world and you will run into several common trends: (a)
misrepresentation of what is being estimated: not defining (or defining imprecisely) the quantities
of interest; (b) misrepresentation of causal versus correlational studies, and particularly a
preference for broad claims from correlative studies over precise claims from causal studies; (c)
the gish gallop: jumping from topic to topic or study to study rather than attempting to reach an
understanding (often making use of [a] and [b] along the way). This document will thus strive to (a)
provide precise definitions, (b) distinguish correlation/causation, and (c) present findings
comprehensively. In later sections, some time will also be spent discussing common scams and
misconceptions.

A word on basic moral principles

There is no question as to the moral dignity and respect for all individuals. It is wrong to treat
people differently simply because they belong to a certain race/ethnicity, sex/gender/sexual
orientation, national origin, or religion. It is wrong to allow harm to people for factors they have
little or no control over. A fundamental principle of our society is that individuals have a right to be
treated as individuals and this principle does not hinge on parameters of heritability, group
variance, or group mean.

Genetic findings often still take on a moral valence with respect to how one should feel about
unfairness in the world and how much can be done to change it. And let’s be honest: many
people just want to use genetics as an excuse to see the current (or prior) state of society as “the
way things are meant to be” or to be cruel to others. As heritability is a descriptive, non-causal,
mathematical abstraction (see below) it provides no insights on moral questions. Anyone using
genetics to argue against moral dignity or claim that genetics tells us how things “should be” is
taking you for an easy mark.

A word about myself

Who am I?



● I received a PhD in Computer Science from Columbia, where my research focused on
population genetics; specifically much of my PhD work involved developing algorithms for
efficiently finding Identical-By-Descent (IBD) segments in large populations.

● I was then a postdoc in Biostatistics / Genetic Epidemiology at the Harvard School of
Public Health, where my research involved heritability, Genome-Wide Association Studies
(GWAS), and integration of molecular/regulatory data to identify disease mechanisms.

● I am now an Associate Professor at Harvard Medical School and the principal investigator
for a lab focused primarily on cancer and disease genetics.

● I remain interested in heritability and behavioral genetics approaches as tools that can
probe the biases and confounders that influence how we use genetics to intervene on
disease.

● If that sort of thing is important, I’ve led and contributed to the development of a variety of
statistical methods that were published in fancy journals or got a lot of citations (ex: this,
this, this, this, and this).

Some of my implicit biases:

● Nearly every geneticist benefits personally when the contribution of genetics is high and
the environment is low. There is a common assumption that geneticists somehow profit
from spreading a “blank slate agenda”, but the reality is that our job is often about making
predictions from genetic variation, and when heritability is high that makes our job easier.
High heritability means we find associations with smaller studies, our statistical
instruments have more power, we can argue that our role is fundamental to
understanding disease, and we get more grant money. The endogenous pressure in the
field is to emphasize high heritability and the “special” nature of genetics and to prioritize
genetic confounding over other sources of confounding.

● Because of my background and ongoing work, I’m generally predisposed to favor
molecular genetics models, particularly those focusing on common variation. Because of
my experiences interacting with human beings I’m also predisposed to be skeptical of
genetic determinism or primacy. Though the goal here is to summarize and think through
findings with some amount of consensus, I will sometimes stray into speculation and try to
indicate those instances with a🔥.

🧭
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Concepts

1.0 | Summary

● Heritability is a mathematical abstraction that assigns discrete labels to correlated
components of trait variance. Because correlated variance can be partitioned in a
multitude of ways, there is no “true” measure of heritability in the population. All
heritability estimators are defined with respect to specific assumptions on genetic and
environmental variance.

● A concise definition of additive heritability is the fraction of trait variation that can be
predicted from a linear combination of measured genetic features in a specific
environmental context. This definition is neither causal (genetic features can predict a
trait by capturing environmental or other correlations) nor is it prospective (genetic
variants predictive in one context may no longer be predictive in another context).

● As heritability is typically a ratio of two variance terms it alone cannot identify:
differences in the genetic or environmental trait mean; compensatory shifts in the
genetic and environmental trait variance; the presence/absence of gene-environment
interactions; genetic or environmental heterogeneity. Heritability is thus completely
uninformative of trait “architecture” or causal mechanisms.

● Heritability is neither an upper or lower bound on trait malleability. There are many
examples of high heritability traits shifting substantially over time through environmental
changes (e.g. eyesight) and, on the other hand, low heritability genetic variation pointing
to biological mechanisms with large effects when intervened on directly (e.g. cholesterol
medication).

● Cultural forces will influence apparent heritability and association of genetic variants.
The same genetic variance in the same environmental context can have different
predictive accuracy (and thus heritability) under different cultural structures: particularly in
the context of assortative mating.

1.1 | Heritability

The definition of heritability has been discussed and debated for decades, often starting from
assumptions on genetic causality, independence of environments, and selective breeding and
then working backwards to caveats and limitations in real populations (Stoltenberg 1997). In
plants, cattle, or dogs (where the terminology originated) assumptions about environments and
selective breeding may be reasonable or directly testable and modifiable. In humans, the
genetics/environment dichotomy does not hold and so a causal definition is either erroneous
from the start or unusably vague. Here, I will instead define heritability in purely
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correlative/predictive terms and then work forwards to the very limited set of causal conclusions
we can draw from it.

What it measures

Let’s start simple and build up. Consider a continuous trait [y] that varies in a given population and
a single genetic variant [x]: the “heritability” of that variant is the magnitude of its association with
the trait, or the squared correlation between [x] and [y]. Run a large genetic study, correlate [x]
and [y], square the correlation (and adjust for noise), and you have the heritability of that trait
attributable to that variant – that’s it! Note that we’ve made no assumptions about how [x]
associates with [y]: it could be causally impacting the trait in the individual or non-causally
correlated with some environment that influenced their trait (or a technical artifact for that matter):
all heritability quantifies is the magnitude of the correlation.

For “complex” traits, where many genetic mutations are associated, each with some positive or
negative “effect size”, the genetic value of that trait in an individual is the sum of all the
increasing/decreasing effects they carry. If we then think of the total trait as a simple sum of the
genetic value and an independent environmental value, the additive heritability is the ratio of the
variance of the genetic value over the total variance. When heritability is 0, that means the
variance of the trait cannot be assigned to any of the genetic value, and when heritability is 1 that
means the variance of the trait can be assigned to all of the genetic value. I’m using the terms
“can/cannot be assigned” because we’ve made the simplifying assumption that the genetic and
environmental terms are independent. In the real world, genetics and environment are
obviously not independent “components” but correlated and interacting processes; every
estimator of heritability implicitly or explicitly makes a choice about how to assign the
correlated variance. Since an oracle will not tell us which assignment is correct, heritability (and
related terms like “genetic values”) is thus always an abstraction of complex underlying
processes (more on this later).

Mathematically, that additive model looks like this:

Heritability is Var(Xb)/Var(y) or equivalently the squared correlation between the genetic value
and the trait [Cor(Xb,y)^2], where [Xb] is also the best additive genetic predictor of [y]. This is
perhaps the most direct definition of heritability: how much of [y] could have been predicted
from a weighted sum of [X]. This definition is specific to the population in which it is being
estimated and to the genetic variation that goes into estimating it.



Finally, a bit of jargon: heritability from the additive model is also often called “narrow sense”
heritability, in contrast to “broad-sense” heritability which also includes the contribution of
non-additive (e.g. dominance) and interaction effects. At the molecular level, the distinction
between additive and non-additive terms is somewhat arbitrary, since one can include
non-additive combinations of genetic material in [X] (for example, [X] could be defined to contain
all pairs of [xi*xj] mutation products and thus also estimate the association of two-way interactions
or all [xi2] terms to estimate dominance).

What it doesn’t measure

Heritability is not a causal parameter. Because genotypes precede phenotypes and (generally)
cannot be influenced by phenotypes, heritability is often implicitly treated as being causal when it
is not. As a simple example, if you have two variants ([xC] and [xNC]) that are perfectly correlated in
the population and [xC] influences the trait while the [xNC] doesn’t (i.e. it is a “tag”), the heritability
from [xNC] alone will be the same as the heritability from [xC] alone (and will be the same as the
heritability from [xC,xNC] together). This is important because if we intervene on [xNC] we will not
actually influence the trait. Disentangling causality gets more complicated if, for example, genetic
variants in a study participant are correlated with genetic variants in their parents, who also
influenced their trait through the environment: now this variation is completely non-causal in the
participant and, in fact, should point us to interventions on the parenting environment rather than
on a genetic mechanism.

The fact that heritability feels intuitively causal but is merely a correlation makes it ripe for
misinformation. Where ordinarily it would be nonsensical to argue that just because we see that
two populations have different rates of college attainment we therefore know what causes the
difference; a bullshit artist can invoke the “high heritability of education” (perhaps even rattle off a
few twin study estimates to the decimal point) and claim confidently that the cause must be “bad
genes”, cloaked in the appearance of scientific rigor. This has created a cottage industry of
“noticers”, who loudly “notice” that certain demographics are associated with certain outcomes
and either explicitly or implicitly argue that, since those outcomes are heritable, these
correlations must also be causal and deterministic. Causal inference is hard but “noticing” is easy,
and so noticers can stay busy spotting meaningless correlations, hoping that you will be
convinced by the sheer volume of their observations.

Heritability does not tell us anything about the malleability of a trait (i.e. whether the trait can
be intervened on or modified). Even when all of the assumptions are met and the estimates are
unbiased, heritability is just a quantification of the association of genetics and environment with
the trait; changing the environment can make the genetics irrelevant or changing the genetics
could make the environment irrelevant. Consider the classic example of eyesight: highly heritable
but easily malleable through the use of glasses (high heritability, high malleability). Are glasses a
“large” environmental variance that’s compensating for high heritability? The question is clearly
nonsensical: variance is a mathematical concept and the mathematical variance of
glasses-wearing trivially depends on how many people have them. But this is the kind of logic
one gets into when thinking that heritability is a surrogate for malleability. For an example in the
opposite direction, consider the case of the gene PCSK9: a tiny number of individuals carry rare



loss-of-function mutations in PCSK9 that dramatically reduce their bad cholesterol, but because
most people carry a normal functioning version of PCSK9, these variants do not “explain” much
of the population variance in bad cholesterol (i.e. contribute much to heritability). However, when
drugs that inhibit PCSK9 are administered to the general population they have a highly significant
effect on the trait mean (low heritability, high malleability).

Other historical examples include the rapid change in human height over the past 100 years or
the rapid growth in educational attainment in the US. Height has changed rankings across
continental groups, almost certainly brought on by improved nutrition. Even though it is a highly
heritable trait (by nearly any estimate), mean height has shifted by ~2 standard deviations in just
five generations (insufficient time for any evolution to have occurred). But ask most people and
they will tell you height is just the way it is because of genetics. Significant increases in height
have even been observed within western countries in the past several generations (Fredriks et al.
2000). Likewise, there has been rapid growth in educational attainment in the US. The number of
college graduates has doubled from 1980 to today (notably, the former would be the time a
typical contemporary biobank participant was of college-age). Are these changes driven by low
heritability? Almost certainly not, heritability is merely a retrospective measure and does not tell
us about the prospective impact of changing the environment.

Substantial changes in educational attainment in the US and height globally/nationally.
(left) Changes in the percentage of the US population who have completed high-school or college over
time; (middle) Changes in adult male height over a century; (right) changes in height in The Netherlands

from 1955 to 1997, attributed to improved nutrition, health, and hygiene.

Heritability does not tell us anything about a population mean/average, because it operates on
variance. For example, if everyone in a given population suddenly grew exactly 5 inches, the
heritability of height would stay the same because only the population mean (and not the
variance) will have changed. In fact, it is quite common in heritability analyses to center and scale
the trait and regress out nuisance covariates so that the heritability estimate loses any “real
world” scale entirely.

Heritability does not tell us anything about the total variance of the trait, because it is just a
proportion of the total variance. Imagine a future where a drug eradicates some disease, except
for a small number of people who cannot tolerate the drug because of a pathogenic mutation. In
this society, the heritability of the disease is now 100% – all disease cases are caused by a
genetic mutation – but the variance of the disease is very low. In contrast, most adults have two
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eyes except for those who experience an environmental trauma – the variance is low and the
heritability is low. So the notions of heritability, mean, and variance are distinct.

To illustrate these points, let’s look at very different traits that produce the same heritability (i.e.
the correlation of the genetic component and the total trait is 50% in the population). It’s trivial to
see that shifts in mean have no effect on the heritability estimate and neither do compensatory
shifts in variance (i.e. when both genetic variance and trait variance are shrunk). One can
additionally construct more complex scenarios with subgroup heterogeneity or
Gene-Environment interaction that produce equivalent heritability estimates by simply fiddling
with various variance terms. In short, heritability tells us how much of the trait could have been
predicted from the genetics in the population we studied, with no guarantees on causality,
malleability, or trait architecture.

Six very different traits with equivalent heritabilities.
The distribution of the genetic value (pink), environmental value (green), and total trait (black) is shown for:
(a) A trait with 50% genetic variance and 50% environmental variance; (b) A trait where the genetic value
has been shifted by five standard deviations; (c) A trait where the environmental value has been shifted by
five standard deviations; (d) A trait with 25% genetic variance and 25% environmental variance; (e) A trait

with two subpopulations, one of which has a genetic value shifted by two standard deviations and
environmental variance increased by five-fold; (f) A trait with 50% genetic variance, 5% environmental
variance and 45% gene-environment interaction variance. In all six instances, the squared correlation

between the genetic value and the phenotype is 0.5

Heritability and liability for dichotomous traits

Up to this point we’ve considered heritability for continuous traits, where [Xb] ads up to a
numerical value (e.g. height). For dichotomous (aka case/control) traits, this formulation is



modified slightly so that [y] is an underlying normally distributed liability, and individuals who
exceed a threshold of liability are affected/cases while the rest are controls. In other words, a
transformation is applied to [y] to turn the top x% into cases, where x is the disease prevalence.
This is the liability threshold model and it is the primary statistical model for working with
dichotomous traits.

The figure below shows various consequences of this transformation as a function of h2g and
disease prevalence. There are several details to notice. First, the amount of genetic variation
within families is surprisingly high: even for a trait with heritability of 100% and a prevalence of
40%, the risk for an individual increases to just ~60% if they have an affected relative or 80% with
two affected parents. This means that even for a completely heritable trait, there will be many
families in which both parents are cases and the child is not. Second, individual risk depends on
both the heritability and the prevalence. So for a trait with heritability of 100% and a prevalence of
1%, the risk for an individual with an affected sibling is still just ~15% – this is much higher than the
population prevalence but still much lower than heritability alone might imply. Third, classification
accuracy (defined as Area Under the Curve for a binary predictor based on the genetic value) is
highly non-linear with respect to the heritability especially for low prevalence traits. It is thus
difficult to think intuitively about how heritability translates into the ability to distinguish cases
from controls.

Aspects of the liability threshold model.
(left) Classification accuracy, (middle) the probability that an individual is an affected case given their

sibling is a case, (right) the risk that an individual is an affected case given both their parents are cases. In
each plot, the results are shown for three levels of prevalence and points are indicated for representative
heritabilities: 5% (roughly the h2g of educational attainment), 20% (roughly the h2g of hypertension and

other biomarker traits), 80% (roughly the twin h2 of height and other highly heritable traits).

A word on “missing” heritability

The discussion about heritability often touches on the “missing heritability” question. Generally
speaking, “missing heritability” can be thought of as a significant discrepancy between
different estimators of heritability. Some people use “missing heritability” to refer to the
discrepancy between twin-based and molecular-based estimates. Some people use “missing
heritability” to refer to the discrepancy between what can be explained by individual, known
mutations (i.e. significant associations from a GWAS) and the total molecular-based estimate



across all mutations (regardless of significance). Most of the time the term only adds confusion
and obfuscates the fact that different methods are estimating different parameters. It also
implicitly presumes that the missing heritability could be “found”, which of course is not certain
(for example if one estimate is simply biased upwards).

1.2 | Genetics, Environment, Interactions, and Assortment

In the real world, traits are not just the sum of a genetic value and an independent environmental
value, they are a function of many complex relationships. To develop an understanding of these
relationships, we typically break them down into further components of the trait variance. These
components are important to define precisely because they are often assigned, estimated, or
ignored differently by different models. Most of the time, models set certain components to zero
or try to quantify what can be assigned to additive genetics and then what is left. In the cartoon
below, a perfect interaction between two terms would result in assigning all of the variance in
outcome to one term or the other arbitrarily. Indeed, complex relationships between genetics and
environment can even yield significantly negative estimates of heritability, which no longer have a
plausible interpretation as squared correlations but can be entirely statistically valid as models of
trait covariance (Steinsaltz, Dahl, and Wachter 2020).

Cartoon thought experiment of additive versus interactive models.
(left) The trait is an abstract sum of an independent genetic and environmental component. (right) The

trait is a more plausible interaction between a genetic and an environmental component. With
interactions, the partitioning of variance into additive genetic and environmental terms (i.e. “nature” and

“nurture”) is not singularly defined and assumptions/constraints have to be made on how to
partition/assign the contribution from “Billy” or “Suzy”. Figure from (Moore and Shenk 2017).

Gene-Gene Interactions (GxG)
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GxG (or “epistasis”) refers to the non-additive combined effects of a single or multiple causal
variants. For example, a recessive effect – where a variant only impacts the trait when both
hazardous alleles are present – can be thought of as a single-variant interaction. If the alleles at
two different variants need to be the same for an effect on the trait, this is a two-variant (or
second order) interaction, and so on for higher order interactions.

Schematic of single-locus GxG (recessive), multi-locus GxG (epistasis), and GxE.
Blue squares indicate genetic/environmental contexts and yellow/orange/red squares indicate a

low/medium/high effect on the trait for that context combination. Note that in all three examples, much of
the non-additive effect can still be “tagged” by an additive model but will be dampened relative to the true
interaction model. A/T are the alleles of one variant; G/C are the alleles of a second variant; and E1/E1 are

two environments.

Gene-Environment Interactions (GxE)

GxE refers to the interaction between genotype and environment on the trait. For example, if a
mutation only has an effect on the trait in smokers and not non-smokers, this is a GxE interaction
where the E (environment) is smoking. Note that E can refer to essentially any non-genetic
factor/exposure. A challenge for heritability estimation is where to assign the contribution of
GxE since both factors need to be in play for the effect to manifest itself; this then becomes a
modeling decision that leads to differences across different estimators.

In addition to the simple model where a mutation has an effect in one context and not another, a
more subtle “amplification” model of GxE has been proposed. Under amplification, the genetic
effects between two environments are correlated but differ by some magnitude (for example, the
effects of all/many alleles in older participants are 1.2x higher in magnitude than the effects in
younger participants). This form of GxE would produce high genetic correlations but large
differences in heritability between environments.

Interactions are scale dependent

It’s important to distinguish between mechanistic interactions – non-additive effects between two
mechanisms in the underlying causal model, and statistical interactions – significant interaction
terms in an inferential model. Different ways of processing data can mask a true mechanistic
interaction or induce a false statistical interaction. In general, this happens when the “scale” or
“functional form” of the response variable is either unknown or distorted by data processing.



For example, let’s generate data with a true multiplicative interaction ([y = x*z]) where [x] is a
continuous variable and [z] is a binary group. When we fit a standard linear model to this data ([y ~
x + z + x*z]) the interaction term is highly statistically significant. Since we have two groups here,
an interaction model is equivalent to testing for a difference in slope between them, and when
we plot the two groups (below) we can indeed see a significant difference in slope. If we instead
log transform the data first, a very common practice to “stabilize” features with high variance, we
have turned the outcome into [y = x + z] and the linear model no longer identifies an interaction.
Moreover, the transformed data actually produces a better fit to the features, so a “data-driven”
analysis would tell us that the transformation is more parsimonious and no interaction is present.

Data transformation masks a true mechanistic interaction.
On the left, the true generative process for a continuous variable interacting with a binary group

(purple/black). On the right, the same data is log transformed and the true interaction disappears (and the
fit improves).

Now let’s consider the opposite effect. We first generate data without an interaction ([y = x + z])
and fit a standard linear model. As expected, the slopes are the same in the two groups and no
interaction is identified. Next, we dichotomize the data based on an arbitrary cutoff; let’s say
individuals above a certain value of [x] are cases and the rest are controls. In a linear model, the
slope in each group will depend on the fraction of cases in that group, so if one group has many
fewer cases (for example, they are systematically healthier but the influence of [x] is the same) the
effect of [x] will appear weaker. In a linear model, this yields a significant statistical interaction
term. Statistical interactions become even more complicated to interpret for ordinal, count-based,
or survival processes (Domingue et al. 2020).

Analysis of a binary variable with a linear model induces a statistical intearction.
On the left, a generative process for two groups (purple/black) with no interaction with the continuous
variable (x-axis). On the right, the continuous variable is transformed into a binary variable based on a

threshold (dashed line in the left plot) that produces case imbalance. This induces a significant interaction
between the variable and the group.

https://paperpile.com/c/UwWSe8/SxnXI


In short, a statistical interaction is neither necessary nor sufficient evidence of an underlying
mechanistic interaction. Statistical interactions can still be useful for modeling; for example by
improving predictive accuracy, adjusting for undesirable artifacts, or evaluating
counterfactuals/interventions (Thompson 1991). But additional mechanistic evidence is needed for
a causal interpretation; goodness of fit alone is not enough. Data that are highly non-linear or
exhibit strong class imbalance are particularly sensitive to modeling assumptions.

Gene-Environment Correlations (rGE)

rGE refers to correlations between genetics and environment which may or may not be caused
by genetics. An example I will refer to frequently is a genetic variant that causes allergies, which
nudges people to move from rural to urban areas. In a rural parent, this variant has a direct causal
effect on the trait. In their urban off-spring, this variant will now be correlated with everything else
they experience in that urban setting. Even generations later when allergies have been cured, the
allele may still be slightly elevated in – and thus correlated – with the urban environment. This
example may seem far-fetched, but in a biobank of half a million individuals such subtle changes
are detectable, and in fact just such an allergy variant was recently identified and associated with
geography (rs5743618, one of the strongest associations with hayfever) (Hu et al. 2023). Another
example is that of genetic variants that influence parental behavior (for example, variants that are
associated with postpartum depression). In parents, the variants influence the environment for
their children. When passed down to those children, the variants will be correlated with the trait
consequences of that environment, even though it is no longer playing a causal role in the child.
These are both examples of “passive rGE”. Various cultural structures can substantially amplify
passive rGE associations well beyond their true underlying causal effect (see [3]).

An “active rGE” correlation can arise when genetic variation causes individuals to enter specific
environments that alter their trait. For example, a variant that nudges carriers to be more
outgoing, which places them in more social situations, which further reinforces their outgoing or
sociable nature, and so on. In this case, the genetic variant may initially appear to have little
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association with the environment, but a causal association increases over time. Finally, when
variants lead to behavior in children that then elicit certain behaviors and environments from their
parents/relatives (who also share genetic variation with them), this creates a feed-back loop
known as “evocative rGE”. Of course, individuals who carry the variant but are not able to
participate in the relevant environment will not exhibit this rGE. As with GxE, the assignment of
rGE is another modeling decision that can lead to differences across different estimators.

Forms of rGE: Passive, Evocative, and Active Gene-Environment correlation.
Blue indicates causal factors; green indicates outcomes; red and dashed lines indicate non-causal factors
and relationships. Bi-directional arrows reflect interactions or reciprocal effects. Adapted from (Avinun

2020)

Assortative Mating (AM)

Assortative mating (also referred to as “homogamy”) is a social process where partners/mates
pair up based on observed or latent phenotypes (e.g. “tall people like to marry tall people”).
Assortment on heritable traits is common, with the highest AM typically observed for educational
attainment and other/related behavioral phenotypes. Notably, AM on educational attainment
(0.48) and political values (>0.5) is higher than AM on IQ (0.23) (Horwitz et al. 2023), reiterating
that AM is a social process and class signifiers can have higher AM than latent traits. AM on a
heritable phenotype will influence the apparent genetic variance in offspring/family studies (i.e.
siblings will be more genetically similar than expected because their parents are more genetically
similar than expected) as well as the correlation between trait influencing alleles (Crow and
Felsenstein 1968; Loïc Yengo et al. 2018). AM thus further complicates the interpretation of
heritability: the same exact variants and causal effects in the same exact environment will
produce different values of genetic variance (and thus heritability) under different mating
patterns. In particular, the association of genetic variance with the trait (i.e. the true [Cor(Xb,y)^2]
is higher under AM than it would be with the same genetics and environment under random
mating (more on this later).

When AM is constant over time, it induces correlations with each generation, roughly half of
which are observed within the first generation and typically reaching “equilibrium” within five
generations. Methods that account for AM typically assume that equilibrium has been reached to
simplify their derivations. Lack of equilibrium (i.e. steadily increasing or decreasing AM) would
cause an estimate not to generalize beyond the estimated generation.
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Impact of heritability and assortative mating on correlations at putatively independent markers.
Assortative mating on a heritable phenotype leads to a sudden increase in the correlation of causal alleles
in the population, which stabilizes at an “equilibrium” in ~5 generations. The correlation increases with

higher heritability or stronger assortment. Simulations using 10 markers and 10,000 individuals.

A related concept is cross-trait AM (xAM), where mates pair up based on matching on different
traits (for example, educated women preferentially pair up with tall men) (Border, Athanasiadis, et
al. 2022). xAM will cause genetic variants influencing a trait in one partner to be correlated with
variants influencing a different trait in another, and may also create apparent genetic correlations
in population studies.

Genetic correlation

Genetic correlation is an estimate of the sharing of genetic variance across pairs of traits (van
Rheenen et al. 2019). Formally, for two traits {y1,y2} with causal effect sizes {b1,b2}, genetic
correlation can be thought of as Cov(X’b1,X’b2)/sqrt(Var(X’b1)Var(X’b2)), where Cov(X’b1,X’b2) is the
genetic covariance between the traits. This is equivalent to the correlation of the genetic values
[Cor(X’b1,X’b2)] or, under very strong assumptions, the correlation of causal effect sizes [Cor(b1,b2)].
An important point about genetic correlation is that it is “normalized” for the heritability of the two
underlying two traits, so two traits with very low heritability can still have very high genetic
correlation if the (small influence) of genetics on each trait is highly shared across traits. Genetic
correlation provides some intuition about the relationship of traits but, by definition, it cannot be
interpreted causally. More directly, genetic correlation between two traits means one trait can be
predicted from the genetic value of the other.

1.3 | Further reading

Heritability:

● (Feldman and Lewontin 1975): Seminal perspective discussing misconceptions around
heritability particularly for understanding group differences.

● (Turkheimer 2000): Fundamental (though now somewhat contested) theories about
behavioral genetics drawn from classic family-based analyses.

● (Moore and Shenk 2017): Conceptual criticisms of heritability as a measurement of
malleability and in the context of environmental interactions.
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● (Lewontin 2006): More on the importance of distinguishing causes from variances.
● (Davey Smith and Phillips 2020): Discussion of the importance and challenge of

understanding causal mechanisms.
● (Baselmans et al. 2021) (and associated interactive online tool): Models and derivations

for thinking about heritability on continuous versus case/control scales.

Environment and more:

● (Thompson 1991): Comment on interpreting statistical versus mechanistic interactions.
● (Mostafavi et al. 2020): Analysis and proposed models for differences in heritability in

different environments and GxE.
● (Loïc Yengo et al. 2018): Derivation of the influence of assortative mating on variant

correlations and frequencies.
● (Horwitz et al. 2023): Large-scale analysis of assortative mating across many traits.
● (van Rheenen et al. 2019): A review of molecular genetic correlations and its applications.

🧬
Molecular heritability

2.0 | Summary

● Molecular methods enable the estimation of heritability (h2g), defined as the
proportion of trait variance that can be predicted from a given set of genetic features.
These approaches generally work by regressing phenotypic covariance on genetic
covariance or modeling the relationship through a multivariate normal likelihood.

● When assumptions are met, estimators of h2g are unbiased with respect to sample
size and causal/non-causal variation. In expectation, the estimate matches the truth at
any sample size and regardless of whether some variants included in the estimator are
not associated with the trait.

● Estimates of h2g correspond to the maximum prediction r2 that can be achieved with a
linear predictor or PRS/PGI and assumptions can thus be verified in held-out data. As
an example, the estimate of h2g of 0.45 for height in 2010 with 4,000 individuals was
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eventually confirmed by a saturated GWAS of 5.4 million individuals in 2022 yielding a
PRS with out-of-sample r2 of 0.45.

● Assumptions for h2g estimators can be violated if: closely related individuals are
retained in the analysis or population structure is otherwise not accounted for
(confounding through rGE), the distribution of causal variants is significantly different from
the distribution of tested variants (LD/genetic architecture bias), assortative mating
distorts the observed genetic variance.

● The h2g of rare coding variant burden (defined as the fraction of trait that can be
predicted by the same) can be estimated using Burden Heritability Regression.
Likewise, other genetic components (GxE, GxG) can be reframed as “variants” in the
relatedness matrix and their h2g quantified.

● Simulations show that recent population structure can inflate conventional estimates
of rare variant h2g. Very subtle demographic models may also inflate common variant
h2g estimates and may be indistinguishable from gene-environment correlation without
causal models.

2.1 | Definition

Heritability formulated as above naturally lends itself to estimation with molecular methods,
where the genetic variation in [X] can be typed and correlated with [y] directly. These molecular
estimates are often called SNP or “chip” heritability (from here on out referred to as h2g for
“genetic”). In contrast to approaches that use closely related individuals, h2g is typically
estimated using putatively unrelated individuals for whom the genetic (or “realized”) relatedness
is inferred directly from the molecular data. This means that if we want to understand how much
genetic variation is correlated with a given trait, we can simply collect data from a lot of random
people and then apply some math.

A little bit of math: Returning to our generative model of the trait as the sum of a genetic value
and an environmental value [y = Xb + e], we can further derive the variance of y as [Var(y) = Var(Xb
+ e) = (XX’) Var(b) + I Var(e) = (XX’/M) h2g + I Var(e)], where [I] is the identity matrix, [M] is the
number of variants in [X], and h2g is our parameter of interest. Here [XX’/M] is the genetic
relatedness matrix (i.e. a pairwise, symmetric matrix where each entry is the correlation across
genotypes for that pair of individuals) and we can see that [h2g = M*Var(b)] or the total variance
(sum of squares) of the causal effects. As before, h2g corresponds to [Var(X’b)/Var(y)] or the
squared correlation between [X’b] and [y]. It can thus be interpreted as “the variance in the trait
that can be assigned to all genetic variation in the relatedness matrix and anything that variation
is correlated with”.

Derivation of the relationship between heritability and trait variance from the additive model.
[y]: the trait; [X]: a matrix of genotypes; [b] the vector of causal effects; [e] a random environmental term; [K]
the kinship / relatedness matrix; [I] the identity matrix. Note this derivation explicitly assumes that [b] and

[e] are uncorrelated (i.e. no rGE), which drops any cross-terms between [X] and [e].



There are several unique aspects of this definition. First, unrelated individuals are more likely (but
not entirely) to be unconfounded by shared environments and require fewer environmental
assumptions. Second, h2g corresponds directly to the maximum prediction r2 that can be
achieved by a linear model using all the variants in [X]. Specifically, for a given training size N, and
number of variants M, the expected prediction accuracy can be derived as [r2 = (h2g * h2g)/(h2g +
M/N)] (Dudbridge 2013; Daetwyler, Villanueva, and Woolliams 2008) (see also (Okbay et al. 2022)
for an alternative derivation). h2g can thus be validated by predicting into independent
samples and comparing the observed and expected prediction accuracies. This may seem like
a simple point but it has quite profound implications: any time we make an estimate of h2g we
can, in principle, confirm that the estimate has predictive validity simply by constructing a linear
score and testing it out of sample (International Schizophrenia Consortium et al. 2009). While this
does not guarantee that the estimated h2g is causal or free of confounding, it does enable an
independent check on the estimating assumptions.

Visualization of three simulated trait heritabilities.
Three populations with simulated phenotypes under different heritabilities. The product of genetic values
between pairs of individuals (x-axis) is correlated with the product of phenotypic values. This approach

can, in fact, be used to estimate molecular heritability in real data (see: Haseman-Elston regression below).
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2.2 | Estimation

Multiple methods can estimate h2g directly from molecular data, typically by relating the
covariance in phenotypes to the covariance in genotypes in a population. GREML/GCTA uses a
“variance component” approach where the trait is modeled as a multivariate normal [y = N( 0 ,
(XX’/M) σ2

g + I σ2
e )] and [h2g = σ2

g/(σ2
g + σ2

e)] is learned by maximizing the corresponding
likelihood (Yang, Lee, et al. 2011). The use of “GCTA heritability” to describe h2g is somewhat
confusing and will be avoided here, because GCTA is a tool that can in fact be used to estimate a
variety of different variance components. Haseman-Elston (HE) regression uses a “method of
moments” approach by simply regressing each element of the product of the phenotype [y’y] on
the relatedness matrix [XX’/M] to estimate h2g by ordinary least squares regression (Golan,
Lander, and Rosset 2014). The differences between these approaches are mainly in how they
handle unusual trait distributions (e.g. case-control traits) and how efficient they are: GREML is
generally more precise than HE regression at a fixed sample size because it makes use of
information across individuals more efficiently.

Two common methods for estimating heritability (h2g).
(a) Estimation with REML under a Multivariate normal likelihood: green is the phenotype vector and blue is
a matrix of sample relatedness. (b) Estimation with Haseman-Elston regression: green is a vector of the

product of phenotypes between individuals, and blue is the vectorized relatedness estimates between the
corresponding pairs.

A third approach, LD-score (LDSC) regression, is unique in that it can estimate h2g directly from
“summary statistics” (i.e. the association statistic for each polymorphism) rather than individual
level data, and is thus more tractable for large or non-public studies (Bulik-Sullivan et al. 2015).
LDSC and HE regression can be seen as summary-based/individual-based analogs of each other,
under some assumptions (Bulik-Sullivan 2015). LDSC is popular for its convenience and
downstream applications, but it requires some stringent assumptions to ensure valid estimates of
h2g, so individual-level methods are preferred. Many extensions to these methods have been
proposed, which typically augment one of the estimation approaches with additional
“components” or different “weightings” of the genetic features.

Properties

https://paperpile.com/c/UwWSe8/Aw3y6
https://paperpile.com/c/UwWSe8/ni8iB
https://paperpile.com/c/UwWSe8/ni8iB
https://paperpile.com/c/UwWSe8/o7KsD
https://paperpile.com/c/UwWSe8/4qL99


An important point about estimators of h2g is that (when assumptions are met) they are
“unbiased”, meaning the estimated parameter equals the true parameter in expectation (i.e. as
sample size increases) for the variants in [X]. This is in direct contrast to the individual
associations identified in GWAS or the accuracy of polygenic scores, which are highly dependent
on sample/training size. In the figure below, a trait with h2g of 0.5 is simulated and estimated
across data from different sample sizes. The estimates remain accurate and unbiased even at
very low sample sizes (i.e. they correspond to the true estimate on average over many
simulations). The only quantity that changes is precision around the estimate – the level of
certainty – which increases with sample size as one would expect. This may seem
counterintuitive if you are used to models “overfitting” to data when the number of data points is
smaller than the number of features. But h2g methods are only estimating a single parameter,
they are not estimating individual effect sizes, and thus remain unbiased when model
assumptions are met regardless of sample size.

Heritability (h2g) estimates remain unbiased regardless of sample size.
Each violin reflects Haseman-Elston regression estimates from 100 simulations of a 50% heritable trait

estimated at the (x-axis) number of individuals. Points represent the mean.

H2g estimates are likewise unbiased by the inclusion of variants in [X] that are non-causal or
unassociated with the trait. This is a mathematical consequence of estimating the sum of the
squared causal/associated effect sizes, which remains the same in these simulations regardless
of the causal fraction. In the figure below, different traits are simulated under a wide range of
causal/non-causal variant proportions, starting from 100% of variants being causal to 99% of the
variants being non-causal. In all instances, the total h2g estimate from a relatedness matrix that
includes all variants (causal and non-causal) is consistent with the true value.

Heritability (h2g) estimates remain unbiased with an increasing number of non-causal variants.
Each violin reflects Haseman-Elston regression estimates from 100 simulations of a 50% heritable trait with

the (x-axis) fraction of non-causal variants. Points represent the mean.



An illustrative real data example comes from one of the earliest molecular heritability estimates in
humans: the h2g of 0.45 for height, estimated from ~4,000 individuals in 2010 (Yang et al. 2010).
At the time, very few individual associations had been identified, and this study energized the
human genetics community by forecasting that a much larger number of associated variants were
hiding below the level of statistical sensitivity. Over a decade later, the estimate was confirmed at
the individual variant level in a GWAS of height from 5.4 million individuals (Loïc Yengo et al.
2022). The 2010 h2g estimate also corresponded to the r2 of ~0.45 for the out-of-sample
prediction accuracy that could be achieved for height in the 5.4M study (assuming ~60k effective
variants, we can use the above derivation to compute expected r2 = 0.45*0.45/(0.45+60e3/5.4e6)
= 0.44, right on the money!). Thus, h2g estimated in the year 2010 provides verifiable claims
about genetic studies and prediction accuracy for the year 2022.

Estimated trait h2g matches observed trait prediction for height.
(left) A massive GWAS of height in 3.5 million individuals identifies individual associations that confirm the
total estimated h2g (h2snp), with some underestimation in other populations. (right) The estimate snph2
also translates nearly perfectly to the achieved out-of-sample prediction accuracy using genome-wide

significant SNPs (GWS) or all SNPs, with a substantial drop in non-European populations. Figure from (Loïc
Yengo et al. 2022)

Misinterpretation

What exactly h2g is estimating is thus often misinterpreted. First, h2g is sometimes described as
a “biased” estimator of the total trait heritability; this is not the case, as h2g does not intend to
estimate the total trait heritability but only the heritability attributable to the variants in the
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relatedness matrix (Yang et al. 2016). Likewise, h2g is sometimes described as a “lower bound”
on the total trait heritability, this again is not the case: if all causal variants are included in the
relatedness matrix then h2g will be an unbiased estimator of the total heritability. Indeed, several
studies have attempted to estimate the “total” h2g by sequencing the entire genomes of
participants and using all of their variants in the relatedness matrix. Finally, h2g estimators, like
any other models, rely on certain modeling assumptions and when those assumptions are
violated the estimator can be biased either upwards or downwards and thus provide no bound at
all.

Until recently, most h2g analyses focused on common variation, which can be assayed at scale
with cheap genotyping arrays. As a consequence, the most comprehensive understanding of trait
heritability is for common variants (i.e. “common h2g”). Common variation (and thus common h2g)
will not capture the contribution of most rare variants, both because they will not be directly
included in the relatedness estimate and because they tend to have low correlation with common
variants and so will not be “tagged”. The extent to which common h2g is an estimate of “all” h2g
(or the total association with trait of all genetic material) is thus a question of the extent to which
variants in [Xcommon] include or correlate with all causal variants.

2.3 | Biases in estimation

No estimator is perfect, and estimators of h2g make several modeling assumptions and can
produce biased estimates when those assumptions are not met. In short, the biases that are of
most concern are: upwards bias from rGE/indirect effects and (primarily for rare variants)
upwards bias from unmodeled population structure. The full set of putative biases is as follows,
roughly in order of most to least important:

rGE and "indirect" genetic effects. When genetic variants present in the relatedness matrix are
correlated with variants present in other individuals that influence the participant's environment,
those effects will also be captured in the h2g estimate. For example, if variants inherited by a
participant from their mother influenced their phenotype through their maternal environment,
then the effect of those variants will get counted in the h2g estimate even though it is "indirect"
(i.e. mediated by parental genetics). This may be interpreted as an upward bias as such "indirect"
effects are not strictly causal (altering them in the participant would not lead to a change in
phenotype in expectation). Another way to think about this is that rGE makes genetically similar
individuals look more phenotypically similar than if there was no environmental structure.
Distinguishing direct and indirect factors will be discussed in much more detail in the next
section.

Subtle population stratification. Population stratification is the incidental correlation between
genotypes (typically due to genetic drift) and environment (typically due to environmental
separation). Estimators of h2g account for stratification through the inclusion of covariates for
genetic ancestry. If these covariates do not fully capture the stratification the GCTA estimate will
be biased, generally upwards (J. Huang et al. 2023). In general, including a large number of
ancestry covariates is seen as an effective way to address stratification (Goddard et al. 2011).
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However, accounting for recent population structure may be challenging for studies of rare
variants (Zaidi and Mathieson 2020; Mathieson and McVean 2012).

Rare variant stratification is difficult to account for and inflates heritability (in simulation).
(a) A common genetic variant that has accumulated in a geographic region (shown as a cloud in the grid)
can be properly accounted for with a variety of methods for controlling stratification (all colored lines,

except “Uncorrected”, match the dashed null). (b) A rare genetic variant arising in a very specific
environment (shown as a point in the grid) leads to inflation association estimates (all colored lines deviate
from the null). In all cases, the variant is not causally associated with the environment/trait. Figure from

(Mathieson and McVean 2012).

Residual genetic or environmental relatedness. h2g is defined assuming a homogenous
population with an independent and identically distributed environmental term. This assumption
is violated if related individuals and/or individuals with substantially shared environments are
included in the data (Zaitlen et al. 2013). In this case, the h2g estimate will additionally capture the
contribution of any genetic variation correlated with the genetic relationship: either direct genetic
effects or correlated environment. This is typically accounted for by restricting to stringently
unrelated individuals (who are unlikely to share environments) and including covariates for known
environmental structure.

The distribution of causal variants is systematically different from the distribution of variants
included in the relatedness matrix (even if all causal variants are included in the relatedness
matrix). For example, if causal variants are systematically at a higher/lower frequency or in
higher/lower correlation than all genotyped variants (Speed et al. 2012). This can produce either
an upwards or downwards bias depending on the relationship between the causal variants and
variants used. In general, this potential bias can be addressed either by partitioning the
heritability into multiple frequency-based components (Yang et al. 2015) or by using alternative
estimators that do not require variant scaling/weighting (Hou et al. 2019).
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Moderate GREML biases when the genotyped and true causal variant frequencies are systematically
different.

Each panel shows the results from simulations where α1 is the true causal model and α2 is the estimation
model. α2=-1 (the default in real data) produces fairly minor bias. Figure from (Speed et al. 2012)

Assortative Mating. Assortative mating biases the genetic relationships towards the causal
alleles, and induces an upwards bias in h2g estimators (Border, O’Rourke, et al. 2022). AM
creates correlations across distant causal variants inherited from genetically correlated parents,
which increases the true association of genetic variance on the trait (i.e. the true [Cor(Xb,y)^2] is
higher than it would be with the same genetics and environment under random mating).
Heritability estimators do not model this excess correlation and thus the association between
genetic variation and trait appears stronger than it truly is, inflating the estimate of h2g (i.e. the
estimated h2g no longer reflects the true [Cor(Xb,y)^2]). This bias impacts estimators differently
and for the GREML estimator it is typically expected to be small (<10%). However, for
social/behavioral traits under high assortment (educational attainment, political values, etc) AM
biases need to be considered.

Moderate GREML and HE bias due to Assortative Mating of the REML estimator.
The solid line is the “equilibrium” heritability, or the heritability in the population assuming AM has

stabilized. The dashed line is the hypothetical “random mating” heritability in a population with no AM.
h2HE is the estimator in the contemporary population using Haseman-Elston regression; h2REML is the
estimator in the contemporary population using REML. Purple dots are estimates from REML/GCTA and

red x’s are estimates from HE/LDSC.
Figure from (Border, O’Rourke, et al. 2022)
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Case/control versus continuous traits. For mathematical reasons, estimates of case-control
phenotype heritability under ascertainment (i.e. cases are overrepresented relative to the
population) may be biased when using REML but not HE-regression (Golan, Lander, and Rosset
2014). Estimates for case-control phenotypes also typically need to be converted to a “liability
scale” parameter, based on assumptions about the population prevalence of the trait and the
underlying trait distribution.

GxG / GxE. Dominance, gene-gene, and gene-environment interactions that are independent of
additive genetics are not included in h2g and do not bias the estimator. Extensions have been
proposed to estimate these quantities: (i) h2 due to dominance “residuals” (the extra contribution
of dominance variation not captured by common variants); (ii) h2 due to all gene-gene
interactions, though the power to estimate this term is generally very low; (iii) an explicit GxE
“heritability” term when the E is measured.

Parameter choices. Each algorithm for estimating h2g involves some explicit or implicit design
decisions: how to scale variants, how to restrict unrelated individuals, how many components to
include and how to select them, how to model covariates, etc. These choices typically produce
some small differences in the resulting estimates.

Different methods for estimating common h2g generally agree.
h2g estimates from five different approaches are shown for 23 representative traits. RHE-mc: A fast,

multi-component HE-regression; LDSC/S-LDSC/SumHer: Summary-based HE-like methods with different
components or SNP weights; GRE: a method that does not assume a given SNP weighting. Figure from

(Pazokitoroudi et al. 2020)
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2.4 | Rare coding burden h2g

A convenient aspect of defining h2g in terms of the genetic variation in [X] is that one can then
derive creative ways to estimate the association of specific classes of genetic variation. Recently
(Weiner et al. 2023) proposed a quantity related to h2g they called “coding burden h2g”, an
analog of h2g but using genes instead of variants. Rare variant studies typically employ “burden”
(or collapsing) tests, which aggregate the carriers of any rare allele in a gene into a single unit.
This is done because individual rare variants have too few carriers to be tested directly, and
under the assumption that any large coding change to a gene is likely to have the same effect on
the phenotype. In the same way that h2g is an estimate of the total trait variance associated with
all the variants in [X], coding burden h2g is an estimate of the total trait variance associated with
the burden effects across all the tested genes. Coding burden h2g thus quantifies an aspect of
rare variant heritability for variants that are otherwise too rare to be counted individually. Coding
burden h2g will be lower than the total rare h2g if some included variants have no effect or an
opposite effect to the average effect in the gene (in contrast to common h2g, which is not biased
by the inclusion of non-causal variants). Recent large-scale analyses of exomes demonstrated
that 77% of associations were identified through burden tests, suggesting that burden h2g
captures a large proportion of total coding h2g (Backman et al. 2021).

Schematic of a collapsed burden test and burden heritability.
Left: A coding burden/collapsing test applied to a single gene. Middle: Coding burden across multiple

genes. Right: Estimating the rare coding burden with Burden Heritability Regression. Figure from (Weiner
et al. 2023).
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2.5 | Population stratification

Population stratification occurs when differences in the genetics between populations and
differences in the environments between populations “line up” by happenstance. For traits that
are influenced by those environments, population stratification will lead to the appearance of
heritability at every variant that differs between the populations (recall: heritability is just the
correlation of genetic variation with the trait).

In neutral two-population models, stratification will lead to some population-specific allele
frequency differences (or “drift”) across all variants in the genome, and can thus be inferred by
methods that estimate broad axes of genetic variation (e.g. principal component analysis (PCA);
(Price et al. 2010; Patterson, Price, and Reich 2006)) or by methods that model unusual patterns
of linkage disequilibrium (LDSC regression; (Bulik-Sullivan et al. 2015)). However, when genetic
structure is recent or complicated, identifying and controlling for stratification is challenging (Zaidi
and Mathieson 2020; Mathieson and McVean 2012). In the figure below, population structure that
is undetected by PCA is shown.

Visualization of population stratification on common and rare variants in simulations.
Top row shows population structure on a grid that is either perpetual separation (left) or separation within
the past 100 generations (right). Middle row shows the structure inferred from common genetic variation
(principal components analysis). Bottom row show the structure inferred from rare genetic variation.

Notably, recent structure is only identifiable from the analysis of rare variants. Figure source: (Zaidi and
Mathieson 2020)
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The line between “population stratification” and “passive rGE” becomes blurred as one moves
further away from the causal mechanism. A rare variant that incidentally accumulated in a region
with excess pollen (and thus appears to be associated with allergy) would be considered
“stratification”. On the other hand, a rare variant that caused individuals with allergy in prior
generations to move to urban areas (and now appears to be associated with urban pollution)
could be considered “passive rGE”. Neither mechanism is strictly causal: the rare variant in the
first example does not increase allergy and, in the second example, does not increase
environmental pollution. Without knowing the underlying mechanisms it is not possible to
distinguish even these two non-causal scenarios.

2.6 | A word on “molecular” kinship heritability

Sometimes molecular methods are used to estimate kinship “heritabilities”, which leads to
confusion about what is actually being estimated. The approach generally involves applying
REML/HE-regression to a kinship matrix built from pedigree relationships, or a “realized” kinship
matrix built from genetic relationships among close relatives (Zaitlen et al. 2013; Speed, Kaphle,
and Balding 2022; Young et al. 2018). In practice, these two procedures are nearly identical, as
the genetic relationships among close relatives are very similar to the expected relationships
based on their pedigrees: one is merely a data-driven estimate of the other (Zaitlen et al. 2013).
Even though molecular data may be employed, the estimand is not the variance in trait that can
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be assigned to genetic variation, but the variance that can be assigned to familial relationships.
Thus, any components of trait variance that track in families – shared environment, for example,
but also rare/private genetic variation – will also be included in this kinship-based estimate
(Zaitlen et al. 2013; Young et al. 2018; Kemper et al. 2021). The extent to which shared
environment biases the estimate relative to h2g will be a complex function of the number of close
relationships in the relatedness matrix and cannot be easily derived. This is illustrated in the
figure below, where a trait is simulated with true h2g of 0.10 and the rest explained by a shared
sibling environment. An estimate using unrelated individuals (i.e. one of each sibling) is unbiased,
as expected. However, as more siblings are included in the analysis, the estimated heritability
increases substantially, going beyond 0.5 when just 4.1% of the relationship pairs are siblings.
Relatively small amounts of relatedness can thus introduce substantial biases.

h2g estimates are inflated by shared environment when including related individuals.
A simulated trait with true h2g of 0.10 (dashed line) and the rest due to shared/familial environment.

Estimates become increasingly biased when increasing the number of siblings included in the analysis
(x-axis: fraction of pairs that are siblings), increasing to >0.50 when 4% of the pairs are siblings. The

estimate is unbiased when restricting to unrelated individuals. All estimates with HE-regression over 100
simulations.

Even in the absence of a shared environment, the kinship-based estimate will still capture genetic
variation that is correlated with relationships in families that would not otherwise be correlated in
unrelated individuals. For example, the fact that two siblings share half of chromosome 1 is
strongly indicative of sharing half of chromosome 2; whereas the fact that two unrelated
individuals share 0.001 of chromosome 1 is not informative of their relationships on chromosome
2. Thus, building a relatedness matrix from just chromosome 1 would capture the contribution of
variation on chromosome 2 (and all the other chromosomes) in siblings but not in unrelated
individuals. Similar intuition holds for variation on the same chromosome that’s not
typed/correlated with the genotyped variants. For this reason, kinship-based estimates are
sometimes referred to as “h2” or “narrow-sense heritability” with the presumption that they will
capture variance explained by all genetic material (Speed, Kaphle, and Balding 2022); but, as
noted above, this terminology is a bit misleading due to the additional tagging of environmental
components. Confusion over molecular h2g estimates in the presence of relatedness has led to
some erroneous conclusions of bias (see: (Kumar et al. 2016) and responses: (Yang et al. 2016;
Gamazon and Park 2017)).
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In practice, the appropriate use of kinship-based estimators is thus to control for the shared
environment, typically as a second component in a model with otherwise unrelated individuals
(Zaitlen et al. 2013; Young et al. 2018).

2.7 | Putting it together: environmental confounding in genetic
studies

The preceding sections focused on general sources of h2g estimator bias, but a particularly
important and poorly understood source is environmental confounding. We’ll define confounders
here in the causal sense: a variable that influences the trait and also influences the genetic
variation being tested. There are three broad classes of environmental confounding in molecular
h2g analyses, summarized in the figure below.

Three broad forms of environmental confounding in genetic analyses.
(a) Shared environment across relatives correlated with the trait; (b) Environment correlated with genotype
frequency due to genetic drift (shaded blue); (c) Environment passively correlated with parental/relative
genotype and with the participant trait. G: Genotype (blue for individuals in the study, gray for related

individuals); P: phenotype; rounded squares indicate environments; dashed line indicates either a causal
or non-causal relationship.

a. Confounding due to a shared trait-influencing environment among close relatives: where
individuals who are closely genetically related also share environmental influences on the trait,
which increases the gene-trait covariance and inflates h2g. This type of confounding is
addressed by strictly pruning related individuals out of the study or including a second
component for close relatedness. H2g estimates may still be inflated by subtle environmental
confounding among moderately related individuals (e.g. geographic environments).

b. Confounding by population stratification: where a trait-influencing environment is incidentally
correlated with genotype due to genetic and environmental drift. This type of confounding is
addressed by including genetic ancestry components as covariates in the analysis, which intend
to capture the axes of genetic variation that are correlated with the environment. H2g estimates
may still be inflated by subtle environmental confounding with recent genetic variation that is not
captured by conventional principal components or is not linearly correlated with them.
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c. Confounding by parental/”dynastic” genotype that is correlated with trait-influencing child
environments. This type of confounding will persist even among strictly unrelated individuals with
homogeneous genetic ancestry. Methods to address such “dynastic” confounding will be
discussed in more detail in [3.0].

Environmental and technical variation can, of course, influence genetic analyses in other ways
(for example, missing or noisy phenotypic data). If these factors are uncorrelated with genotype,
however, they will lead to decreased h2g and fewer associations (i.e. false negative findings) and
thus tend to be less of a concern.

2.8 | Functional partitioning of h2g

While total h2g estimates draw general interest and controversy, the field of molecular genetics is
typically more interested in quantifying which parts of the genome are relatively important for
heritability, known as partitioned heritability. The genome is a patchwork of different functional
elements: gene exons that directly code for RNA, promoters that initiate transcription,
enhancers/suppressors/insulators that regulate those genes, and so on. Knowing whether
variants in certain functional regions tend to have a larger effect on the trait can thus tell us
something general about which biological mechanisms are important and where to focus our
efforts. Under the assumption that causal variant effects are uncorrelated (as well as the other
baseline assumptions described in [2.3]), one can estimate the fraction of h2g that can be jointly
assigned to each of a given set of annotations using multi-component models.

Modeling partitioned heritability with multiple variance components.
(a) Different regions of the genome (1, 2, 3) have different causal effects (b1, b2, b3) on the trait. For

example, SNPs in 1 are in coding regions, SNPs in 2 are in regulatory elements, and SNPS in 3 are all the
rest. (b) The phenotype is a sum of genotype-effect products and a random environment where b1, b2, b3
are each drawn from a normal distribution with their own variance. (c) The variance of the phenotype can

be assigned to each functional partition using partition-specific kinship matrices.



This analysis is most commonly conducted with “stratified” LD-score regression (sLDSC), which
requires only GWAS summary statistics (and the annotated region definitions) (Finucane et al.
2015). Under additional assumptions, these methods have also been extended to overlapping
and continuous (Gazal et al. 2018) annotations, as well as annotations based on other molecular
phenotypes (Yao et al. 2020; Hormozdiari et al. 2018).

In the absence of cross-annotation correlations, functional h2g estimates should also translate
into the expected prediction r2 built from a corresponding “functional” PGI ( just as total h2g
estimates relate to the total possible prediction r2). However, in real data where variants in nearby
annotations are highly correlated, the expected accuracy of a functional PGI is more complicated
and this form of validation is no longer easily defined. Ultimately, functional h2g estimates for a
given trait will need to be validated by actually mapping the individual causal variants and
summing up their contribution in each functional annotation.

2.9 | Biases due to cross trait assortative mating

A major challenge for partitioned h2g analyses is cross-trait assortative mating (xAM). Under xAM,
partners pair up based on different traits and have offspring; those offspring then inherit variation
that is correlated with both traits, which in turn becomes correlated in the population. For
example, if tall people (trait Y) tend to have kids with thin people (trait Z), then the variants
associated with height (Y) become correlated with the variants associated with weight (Z) in their
offspring (including variants that would otherwise be completely independent in the population,
such as those on separate chromosomes). This presents two problems for h2g analyses,
elegantly demonstrated in the recent work of (Border, Athanasiadis, et al. 2022).

First, genetic variants that are associated with trait Z but not Y in a random mating population will
appear to be associated with Y in an xAM population GWAS. This implies that functional
annotations containing variants exclusively associated with trait Z will appear to be enriched
for h2g for Y. For example, if only variants near muscle-expressed genes are associated with
height and only variants near adipose-expressed genes are associated with weight, these two
gene sets will become enriched for both height and weight in the xAM population GWAS. In the
simulations below from (Border, Athanasiadis, et al. 2022), the chance of detecting a non-causal
variant at genome-wide significance increases as a function of xAM and variant effect size.

Increased false variant association under cross-trait assortative mating (xAM).
(y-axis) Power or false positive rate (with values of zero replaced with 5e-8) as a function of generations
since xAM (x-axis). Sample size (n) and number of causal variants (m) are varied across the panels under
fixed heritability. Larger samples and larger effect sizes (fewer causal variants) increase power and the
false positive rate. Simulations with cross-mate correlation of 0.5 and heritability fixed at 0.5. Figure from

(Border, Athanasiadis, et al. 2022).
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Second, traits that are caused by independent variants and would otherwise be uncorrelated
in a random mating population appear to be genetically correlated under xAM. In the
simulations below from (Border, Athanasiadis, et al. 2022), traits with no shared causal variants or
with independent causal effects show increased genetic correlation of observed effect sizes and
of genetic values after xAM. This inflation is observed under either a marker-based or
score-based definition of genetic correlation.

False genetic correlation induced by cross-trait assortative mating.
Genetic correlation (y-axis) as a function of generations of xAM (x-axis) for two traits with no sharing of

causal effects (green line). Estimated genetic correlation across variants (purple) or across genetic values /
PGIs (orange) becomes inflated relative to the truth. Traits with separate causal variants (solid lines) and
shared causal variants with uncorrelated effect sizes (dashed lines) are shown and produce identical

results. Figure from (Border, Athanasiadis, et al. 2022).
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Third, due to the directional effect of xAM, functional annotations that contain variants
exclusively associated with trait Z will appear to be genetically correlated with functional
annotations that contain variants exclusively associated with trait Y. In other words, the false
genome-wide genetic correlation also extends to the local/functional level. In the above example,
local genetic correlation between height and weight will appear to be high in both
muscle-expressed genes (associated only with height) and adipose-expressed genes (associated
only with weight), even if no causal variants are shared between the two annotations. In the
simulations below from (Border, Athanasiadis, et al. 2022), functional annotations that contain no
shared causal variants still exhibit substantial apparent functional genetic correlation due to xAM.

False partitioned genetic correlation induced by cross-trait assortative mating.
Partitioned genetic correlation shown as a function of different trait architectures and xAM. (green solid
line) shows the estimated genetic correlation under a model with true correlation of causal effects in the
annotation; estimates are inflated relative to the true value of 0.25. (dashed lines) show different trait
architectures with no correlation of causal variants and different levels of overlapping partitioned h2g;
estimates are inflated relative to the true value of 0. Inflation becomes most pronounced (pink/purple)

when one trait is much more heritable than the other.

It’s again worth distinguishing predictive/correlative variation from causal variation under xAM. In
the above scenarios, genetic variants associated with height will cause individuals to pair up with
partners based on their weight and induce correlation with weight-specific effects in their
offspring. Height associations in an individual are thus causally predictive of weight in their
spouse and, eventually, their children (but not weight in themselves). One could consider this to
be a socially causal cross-generational, gene-environment interaction; where the environment is
defined by xAM structure and the outcome is the phenotype in offspring. However, the effect is
not directly biologically causal: altering or intervening on a height-associated variant in an
individual would not change their weight. Moreover, if the social structure changes (and it is of
course always changing), even the socially causally effect will no longer hold.

2.10 | Further Reading
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Molecular heritability:

● (Visscher, Hill, and Wray 2008): A high-level primer on estimation and interpretation of
molecular heritability.

● (Yang et al. 2010): Seminal work developing and using REML/GCTA to estimate the h2g of
height. (Yang, Lee, et al. 2011): Full specification of the REML/GCTA algorithm.

● (Zaitlen and Kraft 2012): Review of concepts related to the estimation of heritability using
different approaches.

● (Tenesa and Haley 2013): Review of the measurement, interpretation, and
misinterpretation of molecular heritability.

● (Yang et al. 2016): Commentary from the developers of GCTA describing common
misinterpretations of h2g.

● (W. Huang and Mackay 2016): Discussion of the identifiability of different
additive/non-additive disease architectures with heritability parameters.

● (Young 2019): Perspective on heritability estimates from different estimators and the
“missing heritability” question.

Partitioned heritability, genetic correlation, and biases:

● (Speed et al. 2012): Systematic evaluation of potential biases in h2g estimates due to
deviations in the causal variant distribution.

● (Finucane et al. 2015): Derivation of stratified LD-score regression for functional heritability
partitioning.

● (Zaidi and Mathieson 2020): Models and analyses of potential confounding in genetic
studies due to very subtle/recent population structure.

● (Border, O’Rourke, et al. 2022): Theory and methods for how assortative mating
influences h2g estimators.

● (Border, Athanasiadis, et al. 2022): Theory for the influence of cross-trait assortative
mating on trait heritability and genetic correlations.


Direct and indirect heritability
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3.0 | Summary

● When traits exhibit cultural transmission (parental traits influence child traits) or
assortative mating, population heritability estimates will be biased (typically upwards).
Population heritability estimates and/or indirect effects are uninterpretable: they are an
amalgam of true indirect genetic effects, correlated environmental confounding,
correlated environmental confounding due to assortative mating, and population
stratification.

● Assortative mating together with cultural transmission further amplifies indirect effect
bias over generations and propagates it even after genetics/environment has changed.
In addition to bias due to cultural transmission, under assortative mating the population
heritability may be capturing correlations from prior generations that are no longer active
in the present generation.

● Heritability estimators are additionally biased by assortative mating (even in the
absence of cultural transmission / indirect effects), which is not properly modeled in
the relatedness matrices. Assortative mating will inflate population heritability estimates
and deflate within-family heritability estimates. “Bias” means the estimate no longer
reflects the fraction of the trait that could be predicted with genetic features.

● Estimation bias in h2g models can be fully corrected for only if the assortative mating
has reached equilibrium and the assortment is happening on the measured trait
directly. Latent assortment on an underlying trait can further bias heritability estimates
and no corrections have yet been established.

● The direct genetic h2g (i.e. the variance in trait explained within the individual
unbiased by family environment) can be estimated using within-family heritability and
GWAS methods. Relatedness Disequilibrium Regression, which requires genotyped
parent/child trios, is uniquely robust to environmental confounding from siblings and also
only modestly biased by assortative mating when estimated using REML.

● The same issues of interpretation apply to polygenic scores, in addition to unique
challenges due to the portability from score training to target population.

3.1 | Concepts

By default, h2g will include the variance from genetically correlated environments (rGE).
Intuitively, h2g will include variance due to “active” rGE, where genetic variants drive individuals
to create environments that influence their traits (which are causal in the sense that changing the
genetic variant in that individual can change their phenotype). Less intuitively, however, h2g can
also include variance due to “passive” rGE, where genotypes in parents/families influence the
trait and are correlated with genotypes in the offspring. Completely unintuitive, however, is the
fact that h2g can capture entirely non-causal correlations inflated by “cultural transmission” or
assortative mating. Cultural transmission is the broad phenomena where traits in some individuals
influence the traits in others (Cavalli-Sforza et al. 1982), for example: the language of parents is
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transmitted to their children (“vertical cultural transmission”, see figure below) or the habits of
students are transmitted to other students (“horizontal transmission”). Cultural transmission,
together with assortative mating, can mimic genetic transmission and thus confound the
estimation and interpretation of heritability.

The complexity of such confounding effects was succinctly summarized in a recent GWAS of
educational attainment (Okbay et al. 2022): “The population effect captures the sum of the direct
effect, indirect effects from relatives (e.g., genetic influences on parents’ education,
socioeconomic status and behavior), other gene–environment correlation (i.e., correlation
between genotypes and environmental exposure, with population stratification being one
possible cause) and a contribution from the genetic component of the phenotype that would be
uncorrelated with the PGI under random mating but becomes correlated with the PGI due to the
LD between causal alleles induced by assortative mating.”

Because genetic transmission is a “particulate” process, molecular h2g methods that track
individual transmitted and non-transmitted variants enable us to better disentangle these
components of variation, typically referred to as “direct” (i.e. genetic variants acting on the trait in
the individual) and “indirect” (i.e. genetic variants correlated with everything else). The distinction
between direct genetic effects and indirect correlations is critical to developing a causal
understanding of heritable traits. The figure below visualizes the underlying cultural and genetic
processes as well as the genetic “particles” that can be used to track direct effects and indirect
associations.

Schematics of cultural transmission leading to direct and indirect effects.
(a) Definition of terms: Assortative Mating (AM) between parents; Vertical Cultural Transmission (VCT) of

trait from parents (gray block) to children; Horizontal Cultural Transmission (HCT) between siblings or other
individuals in the same generation. (b) Both transmitted (T) and non-transmitted (NT) alleles can influence a
trait (Y), the former “directly” (blue line) and the latter through rGE/indirect effects (red lines via the parental

phenotypes YM and YP). (c) A more complex multigenerational direct/indirect model including sibling
effects. Figure adapted from (Kong et al. 2018)

To emphasize this point, let’s look at what happens to constant direct genetic effects on a trait in
a constant environment when it is also shaped by vertical cultural transmission (VCT) from
parental traits (for example, language) as well as assortative mating between parents. In the
figure below, a trait is simulated with a small direct genetic effect (variance of 10%), a moderate
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VCT effect from the mean parental phenotype (variance of 40%), and a random environment with
variance of 50%. After one generation of VCT, the true h2g (defined as the squared correlation
between the genetic value and phenotype with no measurement error) immediately appears to
increase to >20% under random mating. This inflation in h2g is a consequence of correlation
with parental genotypes (via cultural transmission), not an increase in the causal biological
effect sizes. The variants appear to have shaped the trait twice, once in the parents and once in
the child, thus inflating the h2g.

Indirect effects increase apparent heritability even under fixed genetic and environmental variation.
A simulated trait where genetic variation is fixed and initially contributes 10% of the variance in the trait,
parental traits contribute 40% of the variance (“vertical transmission”), and the rest is random. Vertical
transmission is replaced with a random environment after 20 generations (vertical line). The average
sibling phenotypic correlation at the end of the vertical transmission period is shown numerically for

reference.

Under assortative mating, the true h2g appears to increase even further and with each
successive generation. Now, due to increased correlation across many sites, the variants appear
to have shaped the trait many times for each generation of assortment. A trait for which only 10%
of the variance is caused by genetics in truth, appears as though a whopping ~60% of it’s
variance is associated with genetics. What happened? Individuals paired up based on their
phenotypes, increasing their genetic similarity, and passed on that excess similarity to their
offspring. They also passed on their phenotypes through cultural transmission. Now offspring
with an excess of trait altering alleles also acquired an excess of the corresponding trait, perfectly
imitating genetic transmission. Over generations, this process repeats and intensifies.

To demonstrate that this apparent h2g is not causal, in the 20th generation we change the
environment from VCT back to random transmission (i.e. the VCT/parental trait contribution to the



trait is replaced with random variance): the apparent h2g quickly returns to ~10%, with slower
decay under high AM. Even though the true h2g changed substantially, neither the genetics nor
the environment actually changed; what did change was the relationship between phenotypes
and environments across generations. Note that these quantities were all derived from the true
genetic and phenotypic values with no estimation, estimators of h2g under these processes
exhibit additional biases as detailed in later sections.

A naive causal interpretation of this data could lead one to conclude that the “influence” of
genetics has fluctuated greatly over time: perhaps a highly beneficial mutation was rapidly
sweeping through the population, or a very deleterious environmental factor was eliminated and
then suddenly returned. GWAS in the earlier generations would identify large-effect variants or
highly predictive polygenic scores. Yet, tragically, attempts to experimentally validate these
associations or identify the right environmental context would fail to recapitulate a large effect on
the trait. How can we avoid this fate? By explicitly incorporating models of direct and indirect
effects into the way we study and quantify heritability.

Finally, let’s clarify a bit of jargon:

● Vertical cultural transmission (VCT) is the process by which traits influence traits across
generations.

● Direct Genetic Effects are the effects of variants in an individual on their trait and are a
consequence of biology.

● Indirect Genetic Effects are the direct effects of variants in individuals in prior generations
on their trait, a consequence of VCT on a heritable trait.

● Indirect Effects / Non-Transmitted Coefficients (Young et al. 2022) are the associations of
variants that were not transmitted to the individual with their trait, and will include both
indirect genetic effects and biases due to population structure and assortative mating
(note that transmitted variants can still have indirect genetic effects).

● The final point is important, as estimates of Indirect Effects are often conflated with
Indirect Genetic Effects and interpreted to be genetically causal when, as we will see,
they are easily confounded by non-genetic factors.

In this section, the following language will be used to distinguish various parameters:

● “True population h2g”: the true squared correlation between the genetic value and
phenotype in the unrelated population (also the squared correlation one would expect
from a PGI estimated without error).

● “True direct h2g”: the true squared correlation between the genetic value and phenotype
in the unrelated population conditional on the true genetic values in the parents (i.e in a
joint model). This is also what one would get from a proper within-family analysis using a
PGI estimated without error.

● “True indirect effect”: the true squared correlation between the average genetic value in
the parents and the phenotype in the child conditional on the true genetic value in the
child (i.e. in the same joint model as above).

https://paperpile.com/c/UwWSe8/9cbuA


3.2 | Estimation

In general, molecular methods partitioned direct effects by quantifying the association between
the trait and the deviation of transmitted alleles from their expected familial values. For example,
genotyping parent-child “trios” and estimating the association between a trait and the genetic
variants in the child while conditioning on the variants in the parents. Since parents are the
source of genetic variation in children, their genotypes are sufficient to account for all indirect
genetically correlated variation. However, it is important to keep in mind that just because parents
are used to estimate the indirect effects does not mean the indirect effects were causal in the
parents (see below for more on interpretation).

Relatedness Disequilibrium Regression (RDR): direct heritability using
families

Relatedness Disequilibrium Regression (RDR) (Young et al. 2018) is an elegant and intuitive
approach to estimating direct/indirect h2g: extending molecular h2g estimates from a single
component of cross-participant relatedness with additional components for the effect of parental
relatedness on the participants’ phenotype. If we think of each participant’s trait as derived from
the sum of (i) a genetic component in the individual (direct), (ii) parental traits and environment
that are correlated with parental genotypes (indirect), and (iii) an uncorrelated environmental
component, RDR partitions the additive contribution of each component, while conventional h2g
estimators collapse the genetic associations of (i) and (ii). The figure below shows how the
various child and parental relationships map to specific components in the RDR estimator (note
the blue “child-to-child” component here is exactly the same as the genetic component for
population h2g estimation in [2.2]).

Schematic of the four component RDR model to partition direct/indirect heritability.
(left) A schematic of the relationships between families modeled by RDR with blue, yellow, and orange
arrows. Gray rectangle indicates the average parental relationship (maternal versus paternal effects are

not modeled). (right) The RDR variance components: phenotype (green) is modeled as a
multivariate-normal function of the child-child relationships (blue), the parent-parent relationships (yellow,
capturing the indirect association from parents), the child-parent relationships (orange, capturing the
covariance of direct and indirect effects), and the uncorrelated environmental component (white).

While the primary estimate of interest is the direct h2g, RDR additionally estimates the variance in
the phenotype associated with the genotypes in the parents and thus correlated with parental
environment ([ve~g], i.e. the “indirect” effect) and the covariance between the direct and indirect
terms ([vg,e]). Significant values of [ve~g] are indicative of genetic variation correlated with familial
environments, and significant positive/negative values of [vg,e] are indicative of an

https://paperpile.com/c/UwWSe8/gUgiA


alignment/misalignment between direct and indirect effects. As noted above, “indirect effects”
are not necessarily causal genetic effects and can be confounded by other non-genetic
processes, as we will see.

Finally and very much in the weeds, RDR (and, to some extent, other molecular h2g methods) can
estimate two forms of direct h2g (recall that h2g is formally defined in relation to the variants
included in the genotype or relatedness matrix): (1) using identical-by-descent (IBD) segments
between individuals, which are expected to capture all transmitted material that arose prior to the
most recent relative from which the segment arose (including most rare variants) (Kong et al.
2008); (2) using common polymorphisms between individuals, which are primarily expected to
capture common variants and variants they “tag”. In simulations, IBD-based RDR captured ~88%
of the variance explained by rare SNPs (between 0.1% and 1%), with the remainder being very
recent variants acquired after relatedness. In contrast, SNP-based RDR captured ~30% of the
variance explained by rare SNPs, as expected from the generally low correlation between rare
and common variants. Thus, IBD-based RDR provides the closest value to the direct effect of
all transmitted genetic material. As a practical matter, high quality IBD inference is only available
in very specific datasets and populations, so the application of IBD-based RDR has been limited.

Within-family GWAS: Individual direct associations using siblings/trios

In the same way that RDR uses genotyped parents to estimate direct h2g, within-family GWAS
designs enable the estimation of the direct effects of individual variants (Abecasis, Cardon, and
Cookson 2000; Brumpton et al. 2020; Spielman and Ewens 1998). The underlying model is again
that of a trait that is associated with direct genetic effects in the participant as well as
confounding by indirect genetic associations in their parents. When data from siblings is
available, the average of the siblings will capture the shared genetic variation correlated with
their environment vertically, and the deviation in each sibling from that average will capture the
direct, sibling-specific variation. In this way, within-family GWAS uses the random genetic
differences between siblings to estimate direct associations without confounding from parental
genotypes, which are fixed for all siblings (Young et al. 2019). These per-variant estimates can
then be fed into standard summary-based methods (e.g. LDSC regression) to estimate common
direct h2g. In the figure below, the standard GWAS regression of phenotype on genotype is
contrasted with the sib-GWAS regression of phenotype on the “genotype deviation” from the
parental or sibling mean.

Schematic for standard GWAS versus within-sib GWAS.
(left) Standard population-scale GWAS can be confounded by unmodeled effects on genotype and

phenotype. (right) Within-sib/family GWAS captures confounding through the parental genotypes and then
estimates the unconfounded effect of the genotype deviation on the phenotype. Circles represent

unmeasured variables; squares represent measured variables; diamonds represent computed variables in
the sib-GWAS. Adapted from (Howe, Nivard, et al. 2022).
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A unique advantage of within-family GWAS analysis is it is not biased by assortative mating, in
contrast to variance partitioning methods like RDR (more on this in [3.5]) (Lee et al. 2018;
Brumpton et al. 2020; Davies et al. 2019). A unique disadvantage is that, unlike RDR, sib-GWAS
estimates will be biased in the presence of indirect sibling effects: where the genotype in one
sibling influences the phenotype in the other through sibling environment. The indirect sibling
effect is effectively “overcorrected” in the sib-GWAS and introduces a corresponding negative
bias in the direct effect estimates (positively correlated sibling indirect effects will deflate the
sib-GWAS estimate and negatively correlated effects will inflate the sib-GWAS estimate). In
contrast, RDR draws signal from individuals across families (after controlling for their parents), so
will remain unbiased even with the inclusion of individuals that have siblings as long as the
number of sibling pairs is smaller than the number of total pairs (which is true in any large
dataset). Large indirect sibling effects have not been observed to date (Young et al. 2022), but
with wide uncertainty on the estimates their precise magnitude remains an open question.

Conditional h2g: Adjusting for known environmental
confounding/correlation

Perhaps the simplest way to account for rGE would be to measure the environments and include
them as features in the inferential model. Indeed, this is typically how population structure is
addressed, with genetic ancestry or genetic relatedness itself treated as a proxy for the
gene-environment relationship and added as a covariate or a random effect, respectively (Price
et al. 2010; Patterson, Price, and Reich 2006). Intuitively, if environmental covariates account for
non-genetic environmental variance, then the h2g should increase (because the remaining
environmental term has decreased); whereas if environmental covariates account for
gene-environment confounding, then the h2g should decrease. This is relatively straightforward
for covariates that are known to be upstream of genetics (e.g. parental environments) but
becomes more complicated for covariates that may be mediating genetics. Simply adjusting for
all available measurements can introduce new biases by distorting the estimate around
non-causal relationships (commonly known as “collider bias”, illustrated in the figure below). Note
that collider bias can distort the estimate in either direction: if genotype and phenotype have the
same (different) direction of effect on the collider, the genotype-phenotype association will be
biased downwards (upwards).
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Schematic of confounders versus colliders.
When confounders are present (left), the estimate of the causal effect of exposure on outcome is distorted

and adjusting for the confounder can recover the true estimate. However, if a collider is mistakenly
adjusted for (right) it will induce a bias to an estimate that otherwise would be correct.

Consider the following examples (also illustrated in the figure below):

A. If urban environments influence the phenotype of some individuals with no relationship to
genetics (a simple environmental confounder), adjusting for the urban environment will
correct genetic estimates and increase h2g.

B. If ancestral individuals with allergy variants moved to urban environments and the genetic
variation in their present-day children is indirectly associated with phenotypes influenced
by the urban environment (a gene-environment confounder / passive rGE), adjusting for
the urban environment will correct genetic estimates and decrease h2g.

C. If a genetic variant causally influences moving to an urban environment in contemporary
individuals and a non-genetic trait also influences moving to an urban environment (a
collider), adjusting for the urban environment will distort the estimate h2g of the
non-genetic trait (potentially increasing it).

D. If a genetic variant directly influences moving to an urban environment which in turn
influences the trait (an environmental mediator / active rGE) or a genetic variant influences
the trait which in turn influences the environment, adjusting for the urban environment will
distort the h2g (potentially decreasing it).

Illustrations of gene-environment relationships.
Analysis is always with respect to the effect of G (genotype) on P (phenotype) with (E) as an environmental

factor. Gp are unmeasured parental/ancestral genotypes.



Thus care needs to be taken when selecting the covariates to adjust for. In instances where the
phenotype occurs temporally after the covariate (for example, the covariate is place of birth) one
can be more sure that no causal path exists from phenotype to covariate and thus no collider
bias.

Within-family polygenic scores (PRS/PGI)

A polygenic score or index (PRS/PGI) is simply the sum of the estimated genetic effects on a trait

in a single individual: i.e. [x ] where [x] is the vector of genotypes and [ ] is a vector of estimatedβ
^

β
^

causal effects of each variant (with the little hat “^” indicating an estimate) (Chatterjee, Shi, and
García-Closas 2016). Although in principle PGIs correspond to the genetic value that variance
partitioning methods like GREML and RDR also attempting to quantify, the correlation or LD
between variants poses a major challenge that the two methods address differently: specifically,

the fact that PGIs use [ ] rather than [ ] results in many important and sometimesβ
^

β
counterintuitive differences. Variance component approaches are effectively fitting all variants
simultaneously and estimating their joint association with the trait, without needing to identify any
individual causal variants (if you look under the hood at GREML, for example, you will see
equations that are very similar to Bayesian or ridge regression across all variants). In contrast, PGI

approaches typically estimate each [ ] individually (“marginally”) via GWAS and then performβ
^

some post processing to either select the optimal variants for the PGI or to “shrink” certain
variants to contribute less. There are many strategies for selecting these optimal variants, but the
general consequence is that the PGI will contain a mixture of variants that are directly
causal/associated with the trait and variants that are only associated through other correlated
variants. This may be a relatively minor issue when applying PGIs within homogenous
populations but becomes a major issue across genetically distant populations (Martin et al. 2017).

PGIs can likewise be applied within families to estimate components of the direct and indirect
effects, by jointly analyzing the PGI computed in an offspring and the PGI computed in their
parents for association with the offspring trait (Kong et al. 2018). While there are analogs between
most within-family PGI designs and within-family h2g estimators, PGIs are often used because the

weights [ ] can be trained/estimated in much larger cohorts of unrelated individuals and thenβ
^

applied within smaller family-based studies. Within-family PGI analyses also do not exhibit
additional estimation bias due to assortative mating (see [3.3]) (Herzig et al. 2023). However, the
estimation and application of PGI from one population to a different within-family study leads to
several unique challenges for interpretation:
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● In contrast to h2g estimators which are unbiased by sample size, PGI accuracy is biased

by training sample size (because the individual [ ] will be noisier when learned in smallerβ
^

studies). PGIs will thus also be less accurate if they were derived from smaller studies and
cannot be easily compared across different training sets even for the same target set.

● PGIs will, by definition, reflect the studied population, so if either the environment or the
genetic variation differs between the training and target population the PGI will no longer
reflect the genetic value in the target population.

● PGIs trained in a population GWAS will capture both direct and indirect effects, if these
effects are not perfectly identical the resulting PGI will be an arbitrary mixture of the two.

● Using a population-trained PGI in parents to capture “indirect” effects will likewise
account for both direct and indirect effects and may over- or under- correct depending on
the influence and correlation of these effects.

● Direct PGI effect estimates in siblings may be biased by indirect effects from siblings.
● As with within-family GWAS (see above), within-family PGI estimates of direct effects are

not biased by assortative mating (Lee et al. 2018; Brumpton et al. 2020; Davies et al.
2019).

● Indirect PGI effect estimates are biased (typically upwards) by assortative mating
(Balbona, Kim, and Keller 2021), as discussed for other methods in the next section.

● A PGI trained using within-family weights (i.e. a “direct” PGI) but predicted into a
population-level target dataset will still be correlated with and confounded by indirect
effects. Within-family controls must also be applied in the target data to control for
environmental confounding.

In short, PGI-based analyses further sacrifice interpretability for increased statistical power and
fewer biases under assortative mating (more on this in the next section).

3.3 | Estimation bias due to assortative mating

Theory

Assortative mating increases the genetic variance relative to what would be observed in a
random mating population by inducing excess covariance across putatively independent sites.
Conventional estimators of h2g (either direct or population) do not properly account for this
covariance and so are additionally biased in the presence of AM. This bias means the
estimated h2g no longer corresponds to the true [Cor(Xb,y)^2] in the population.

For population-scale estimators of h2g, the estimate is biased upwards by a factor of [Vg,eq / Vg,0],
where under positive assortment the genetic variance at equilibrium ([Vg,eq]) is larger than that in
the random mating population ([Vg,0]) (Border, O’Rourke, et al. 2022). For within-family (e.g.
RDR/sibling regression) estimators of h2g, the estimate is likewise biased downwards by the
reciprocal, a factor of [Vg,0 / Vg,eq] (Kemper et al. 2021). In both cases, the estimated h2g is a mix of
random mating and equilibrium variances. Because the estimators are not aware of the excess
genetic covariance (which occurs at trait increasing alleles we generally do not know), the
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population-scale estimate sees individuals as less related than they actually are (and increases
h2g to compensate) whereas the within-family estimate “over-corrects” for genetic correlation in
siblings/parents sees siblings/parents as more related than they actually are (and decreases the
h2g to compensate).

In the figure below, we can observe this behavior in simulations for a heritable trait with only
direct effects undergoing assortative mating. On the left, genetic and phenotypic mate
correlations increase immediately after assortment starts (i.e. we model AM as an instantaneous
process starting in generation 2). Genetic variance increases more slowly and reaches
equilibrium at ~5 generations; total trait variance thus also increases because environmental
variance remains constant by construction. Finally, “h2g” (black) increases slightly due to the
increase in genetic variance relative to fixed environmental variance. Here we again see a trait
with identical genetic effects and identical environmental effects exhibiting different apparent
h2g in different cultural contexts. On the right, heritabilities are estimated at each generation
using a population estimator (HE regression) and a within-family estimator (RDR), starting without
bias (generation = 1) and slowly inflating (population estimate) and deflating (within-family
estimate). Again the true h2g (squared correlation of [Xb] and [y]) is shown in black, with neither
estimate matching the true value. The expected bias, based on the variance ratios described
above, is shown with colored dashed lines calculated from the true genetic variances and
matches the observations through the entire trajectory. Note that this simulation includes only
direct effects and so all biases are due to assortative mating.

Consequences of strong assortative mating on trait variance across generations.
(a) A simulated trait with random mating direct genetic variance of 0.4 and phenotypic assortative mating
of 0.7. Vg: variance of the genetic value; Ve: variance of the environment (fixed); Vy: variance of the total
phenotype; Mate rg: correlation of genetic values between mates; Mate ry: correlation of phenotypes

between mates; cor(g,y)2: “heritability” or correlation between genetic value and phenotype. (b) Estimates
of population (orange) and within-family (green) h2g relative to the true h2g (gray, defined as true

[Cor(Xb,y)2]). Black dashed line shows the random mating h2g; colored dashed lines show the expectation
based on variance correction factors. The two rightmost points show bias corrected estimates at



equilibrium (see below). All results are averages over 20 simulations with n=10,000 and m=100.

Lastly, AM biases (and thus AM corrections) do not apply equally to all inference algorithms. The
above ratios are derived for HE-based estimators which follow basic mathematical properties.
REML-based inference of population h2g has generally less pronounced bias but can be biased
upwards or downwards relative to equilibrium heritability (Border, O’Rourke, et al. 2022).
REML-based inference of direct h2g with RDR also exhibits less pronounced bias in the presence
of indirect associations (see below). Contrasting REML and non-REML estimates has even been
proposed as an approach to evaluate the influence of AM on population-based estimates (Border,
O’Rourke, et al. 2022).

Bias correction

If the true values [Vg,t / Vg,0] were known, the estimated h2g could be corrected by their
respective ratios in any generation [t]. At equilibrium, the [Vg,0 / Vg,eq = (1 - rg,eq)] where [rg,eq] is the
correlation of genetic values between mates, so just one parameter needs to be known. In real
data, however, we do not know these values and have to employ approximate corrections based
on the values we do observe. Unlike [rg] which is unknown, the observed phenotypic assortment
[r] can be measured from spousal correlations, and under the assumptions that (a) the trait is
polygenic, (b) assortment is operating through the observed trait, and (c) the trait is at equilibrium,
then [rg,eq = r h2

eq]. Population estimates of h2g can thus be corrected using [h2
eq = h2

est,pop / (1 + r
h2

est,pop)], as derived in (Border, O’Rourke, et al. 2022); and within-family estimates can be
corrected using [h2

eq = (1 - sqrt(1 - 4 r h2
est,fam))/(2 r)] as derived in (Kemper et al. 2021). For example,

an estimated within-family h2g of 0.17 and an [r] of 0.45 would correspond to a true equilibrium
h2g of 0.19 (which would also correspond to an uncorrected population-level estimate of 0.21).
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While polygenicity and equilibrium may be reasonable assumptions, the assumption that [rg] is
related to the observed assortment through [r h2

eq] is more likely to be violated (Torvik et al. 2022;
Keller et al. 2009; Young 2023). As we saw in [3.1], increased [rg] can occur as a simple
consequence of AM coupled with vertical cultural transmission (VCT), which increases genetic
similarity beyond what is expected from the direct h2g. In other words, with VCT and AM on the
observed trait, [rg] will equal [r h2

eq] instead of [r h2
eq,direct] and a closed-form correction to recover

[h2
eq,direct] has not been derived. Increased [rg] can also occur through assortment on an

unobserved phenotype that is much more heritable and genetically correlated with the observed
phenotype (for example, latent phenotypes of conscientiousness and grit that manifest as a less
heritable phenotype such as college attainment); or assortment on highly heritable related traits
in families/siblings, where individuals with low observed phenotypic correlations still pair up
based on the latent genetic correlations they observe in relatives. On the other hand, [rg] could
also be lower than expected from [r h2

eq] if AM is occurring through “horizontal” cultural
transmission, where individuals pair up based on correlations in their non-genetic
environments/culture rather than the heritable trait itself. For example, all individuals in a given
social class go to college regardless of their genetic predisposition and then marry other
individuals of their social class who attend college (phenotypic mate correlation without genetic
mate correlation). More sophisticated methods to interrogate these assumptions, estimate [rg]
from data, and correct for latent assortment are actively being developed (Young 2023; Bilghese
et al. 2023; Herzig et al. 2023).

In short: AM induces a downward bias in within-family estimates of direct h2g; correcting for
AM requires knowing the true underlying genetic correlation between mates; and corrections
should be applied to HE estimates which behave as expected from theory. The focus on
assortative mating may seem highly technical, but for a small number of traits undergoing
substantial assortment, these technical details often limit the ability to draw clear conclusions
about the underlying estimates.

Putting it all together: direct heritability estimators and their biases

With all of the above estimators and potential biases in mind, let’s look at what happens in
simulation as we increase the levels of confounding. To make things simple, we’ll fix the true
direct h2g at 0.2 and set all of the direct/indirect/sibling effects to be perfectly correlated (or
anti-correlated), so their presence only increases or decreases the observed genetic variance.
Then we estimate direct h2g using the molecular methods described above.

Influence of increasing levels of confounding on direct heritability estimates in simulation.
From left to right additional confounders are added: (A) no confounders, only direct h2g; (B) indirect

effects, (C,D) negative or positive sibling effects, (E) phenotypic assortment, and (F) genetic assortment.
True direct h2g is always at 0.2 and shown with a dotted line. [HE total]: Haseman-Elston regression
estimate of total/population h2g (values above 0.5 are not shown and reported numerically inside the
bar)); [Sib FE]: Sibling Fixed Effect analysis evaluating the sibling-family deviation in PGIs (assumed to be
free of error); [Sib Reg]: Sibling regression estimate of direct h2g; [RDR HE/REML]: RDR estimate of direct

h2g using Haseman-Elston/Least Squares (HE) or REML. Each bar reports the mean over 10-100
simulations depending on method.
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● A: When genetic effects are direct every method recovers an accurate estimate of the
true h2g.

● B: When parental indirect effects (with variance of 0.10) are added, the standard
population-level estimate of h2g is inflated (it’s inflated by more than 0.10 because of the
perfect correlation between direct and indirect effects here further increasing the true
genetic variance) but all within-family estimates remain unbiased. This is the utility of
within-family designs.

● C/D: When (negative or positive) sibling indirect effects are added (explaining 0.025 of
the variance in trait, or a quarter of the parental indirect effects), both sibling fixed effect
models and sibling regression are biased due to overcorrection in the familial effect. RDR,
which draws signal primarily from the variation across individuals, remains unbiased.

● E: Adding phenotypic assortative mating of 0.5 deflates all within-family estimates and
inflates the population estimate further. Because true h2g is low, the decrease due to AM
is very slight.

● F: Adding genetic assortative mating of 0.5 (i.e. parents mate based on correlated genetic
values) more substantially deflates the within-family estimates and further inflates the
population estimate. A milder effect is observed of RDR REML, which models all
relationships simultaneously rather than as pairs.

In short, RDR REML provides the most accurate molecular estimate of direct h2g, with biases due
to assortative mating that are slight in the presence of indirect effects.

Bias for within-family PGIs

As noted above, the bias due to AM in PGIs behaves a bit differently from h2g estimators
because the latter is estimating regression coefficients rather than partitioning variance. Under
AM, within-family indirect/non-transmitted PGIs correlate with excess variation across
chromosomes that would otherwise be independent in a random mating population, and are thus
biased upwards (by a factor of [1 - rg,eq]; (Lee et al. 2018; Okbay et al. 2022)). In contrast,
within-family direct PGI effects are estimated without AM bias because the transmission of
variants within families is random and cross-chromosome correlations are broken (Brumpton et al.
2020; Davies et al. 2019; Okbay et al. 2022). Because the relationship with assortative mating
has been somewhat confusingly described in the literature, a cheat sheet across different study
designs is provided below. Broader conceptual issues with direct/indirect estimates are
discussed in the next section, and the adoption design is discussed in more detail in [5.11].

Biases in different PGI study designs.
Each row reports a different PGI estimator and each column reports a potential source of confounding.
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The population PGI is ill-defined as an effect estimator in the presence of any confounding. Population
stratification is not included as it can bias all designs. [*] Adoption direct effects are only unbiased if there

are no prenatal effects.

Bias under different scenarios References

PGI / study design No AM
No VCT

AM VCT AM and
VCT

Population Unbiased Biased Biased Biased (Kong et al. 2018)

Within-Family Direct Unbiased Unbiased Unbiased Unbiased (Brumpton et al. 2020; Davies et al. 2019; Okbay et al. 2022)

Within-Family Indirect Unbiased Biased Unbiased Biased (Balbona, Kim, and Keller 2021; Okbay et al. 2022)

Adoption Direct Unbiased Unbiased Unbiased* Unbiased* (Demange et al. 2022)

Adoption Indirect Unbiased Unbiased Unbiased* Biased (Demange et al. 2022)

3.4 | Interpretation of direct heritability and indirect associations

Direct effects: still environmentally specific

The same issues regarding misinterpretation of h2g across environments apply to interpreting
direct (within-family) effects across families (Coop and Przeworski 2022a). Direct effects are not
informative as to the malleability of a trait in a different environmental context: a “strong” direct
effect in one environment may be completely abrogated by a shift to a different environment or
an intervention. Direct effects also do not explain variance across families: a direct effect within
families may be completely swamped by environmental differences between families or,
alternatively, amplified by environment/indirect effects correlated with those direct effects.

Specific to within-family studies is the fact that individual direct effects are estimated at positions
that are heterozygous in the parents (thus providing within-family genetic variation). If such
positions are not randomly distributed with respect to the environments in the population (for
example due to stratification or ascertainment), then they will not reflect the true population level
direct effect sizes (Veller and Coop 2023).

Correlations between direct and indirect effects, which are common and can be both positive or
negative, further complicate interpretation by inducing causal consequences across successive
generations (more on this later).

Lastly, while direct effects may be statistically causal, they should not be interpreted as
“biologically” causal: a direct effect on educational attainment in a society that discriminates
based on skin/hair pigment would still be mediated by within-family differences in pigmentation
(i.e. causal via discrimination).
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Indirect effects: neither “effects” nor “indirect”

While there is at least some causal notion to the direct effect, there is no such interpretation for
indirect effects because indirect effects do not control for confounding by environment,
assortative mating, or stratification (Veller and Coop 2023; Okbay et al. 2022). In a simple
semi-casual scenario, a genetic variant that induced allergies many generations ago and nudged
carriers to move to the cities (i.e. classic passive rGE), would now contribute to indirect effects on
urban pollution even though it has no causal effect on the trait in the current generation
whatsoever. In the more complex scenario with VCT and AM, large indirect effect estimates can
be observed with no causal relationship in any generation. It is very tempting to treat indirect
effects as simply genetic causes in the parents (sometimes even referred to as “genetic nurture”)
but as we have seen repeatedly, entirely non-causal processes can create or inflate the indirect
effect and estimate.

To illustrate the point, let’s revisit the above simulation of h2g in the context of AM and VCT and
use within-family RDR to estimate direct h2g and the [ve~g] parameter. Recall that the causal effect
of genetics is 10% of the trait variance, the VCT is 40%, and the remaining 50% is random; AM is
induced for 20 generations; then in the 21st generation VCT is replaced with 40% random
variance. We compute the “true” values of each parameter by regressing the trait on the genetic
value in the child (population h2g) or on the genetic value in the child and their parents jointly;
and we estimate their values from the data using RDR.

Estimation of components of heritability with changing assortative mating and vertical cultural
transmission.

Population (“total”) h2g (top left) with sibling correlations shown numerically; direct effect (top middle); and
indirect effect (top right) in the same simulation of AM + VCT followed by no VCT as in [3.3]. (bottom)
Corresponding estimates from the population (Haseman-Elston regression) or within-family (RDR).

Confidence intervals across 15 random simulations shown in shaded regions. Each simulation used 10,000
samples and 100 variants.
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In the figure above, the estimate of direct h2g (bottom row, middle panel) generally reflects the
true 10% direct genetic effect (top row, middle panel), or is biased down by assortative mating.
Likewise, with random mating, the indirect estimate is roughly proportional to the fraction of the
trait in the child correlated to the genetic values in the parents (2*0.4*0.1). But with AM, the
indirect estimate ([ve~g]) becomes wildly inflated, even exceeding 1.0 when mate correlation is very
high. This estimate is now some amalgam of the (non-causal) correlation of parental genetics with
child traits via parental traits, inflated by the excess correlated genetic variance in the parents
due to assortative mating. Note that even if the true population or indirect estimates could be
resolved (as in the top panels, computed by regressing the phenotype of the child on the true
genetic value – estimated without error – of the child and their parents jointly), they too are
inflated by AM, though less substantially.

This example highlights why indirect effects, [ve~g] from RDR, or indirect PGI terms should not
be interpreted as the effect of “genetic nurture” or even as an “effect” at all. Absent AM, these
parameters can reflect “effects” in distant generations or bias due to population stratification. In
the presence of AM, they can reflect inflated correlations due to mating patterns both as inferred
by family models and in truth (i.e. with perfectly estimated genetic mate correlations). These
issues will be further compounded in the context of cross-trait assortative mating, which can
induce inflation via the relationships between the studied trait and other traits (Border,
Athanasiadis, et al. 2022).

3.5 | Biases in population heritability under AM and VCT
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While the above analyses have primarily focused on the direct h2g estimate, which can be
interpretable (if slightly biased) under complex cultural scenarios, let’s now re-examine what
happens to the population h2g estimate in the presence of both AM and VCT. Conceptually we
should expect (a) AM to induce genetic correlation between spouses and excess heritability and
(b) VCT to induce gene-environment correlation across generations and excess heritability. How
do they act together?

Compounding effects

Population h2g estimates in the presence of AM and VCT will be a complex mix of the direct
causal effects, the indirect confounded effects (including both AM and VCT), and AM-induced
estimation bias. In the figure below, a trait with a fixed causal genetic variance (30%) is simulated
under scenarios with only AM (left), only VCT (right), or both.

True and estimated h2g under varying levels of AM and VCT.
A simulated trait with 30% direct genetic variance (green dashed line) and either mate correlation of 0.5
(left) or VCT of 20% (middle) or both (right). “True h2g” is the true squared correlation between genetic
value and phenotype without measurement error. Population h2g estimated using Haseman-Elston
regression. Results averaged across 15 simulations with 10,000 samples and 100 markers each.

AM alone (left) induces excess genetic variance which increases the true population h2g (green),
as well as additional bias in the h2g estimate (light green). As expected, the genetic mate
correlation [rg] (light blue) is approximately equal to the product of the observed mate correlation
[r] and the true [h2eq]. Thus the estimated h2 can be corrected based on observed mate
correlations as described above. VCT alone (middle) does not increase the genetic variance, but
instead increases the gene-environment correlation and thus both the true and estimated h2
equally. As expected, VCT alone does not produce genetic mate correlations and would thus
yield unbiased estimates using within-family estimators. Finally, both AM and VCT (right)
compound to introduce a complex set of biases. Both the genetic variance and the correlated



environmental variance increase, leading to a large increase in the true h2 and an even larger
inflation in the estimated h2: increasing from a direct value of 0.3, to a true population h2 value of
~0.6, and an estimated population value of >0.8. The estimated h2 can still be corrected to the
true h2 based on the observed mate correlation [0.84/(1+0.84*0.5) = ~0.6], however this
population h2 still does not reflect the direct causal heritability. Thus strong AM and moderate
VCT can compound to substantially increase true population h2 and inflate the population h2
estimate.

Persistence of bias across generations

An important aspect of AM is that it can cause genetic variance to build up over time (due to
increased correlation across putatively independent markers) and then dissipate over
generations. This means that population/indirect estimates of h2g from current data may be
biased by the buildup of variance from historical cultural structure even when the modern-day
genetic architecture is substantially different. To highlight the persistence of such biases, let’s
modify the simulation in [3.4] from fixed genetics with changing environmental structure to
changing genetics with a fixed environmental structure. Imagine that for a long period of time skin
pigment strongly influenced whether a person would go to college via discrimination, producing
a high direct h2g for college attainment; additionally, college attainment is culturally transmitted
from parents to children (VCT), and spouses tended to pair up based on college attainment (AM).
At some point, laws are passed that end discrimination and the direct influence of pigment genes
on college attainment is substantially diminished, but cultural practices (VCT and AM) remain.

To formalize this scenario, we start with a trait where genetics causally contributes 40% variance,
VCT (i.e. mean parental trait) contributes 40% variance, and random environment is 20%; random
mating occurs for 10 generations; then in generation 11 the genetic variance is shrunk to just 4%
(and the environment increased to 56%). As above, we calculate the true heritabilities using either
a marginal regression of the trait on the genetic value, or a joint regression of the trait on the
genetic values of the child and the sum of the parents. Finally, we estimate population h2g using
HE regression and direct h2g using within-family RDR, with results shown in the figure below.

Estimating heritability with assortative mating, vertical cultural transmission, and changing genetic
effects.

(left) Population (“total”) h2g values (top) and estimates (bottom). (right) Direct h2g values and estimates.
Traits are simulated with VCT, AM, and 40% causal genetic variance (horizontal gray lines) for 10

generations and then 4% causal genetic variance for 10 generations. Gray horizontal bars show the
simulated direct causal h2g and vertical line highlights the last generation of high genetic variance.

Confidence intervals across 15 random simulations shown in shaded regions. Each simulation used 10,000
samples and 100 variants.



In the top left, we again see how VCT (and, to a lesser extent, AM) increases the true h2g (that is,
the squared correlation between genetic value and phenotype). In the bottom left, the estimated
population h2g reflects the true h2g under random mating but substantially biased upwards
under AM, even reaching out-of-bounds values >1 when mate correlation is high. This would not
be resolved by established AM corrections because existing corrections assume no VCT (though
see: (Young 2023)). Moreover, when genetic variance drops to 4% in generation 11, the estimated
population h2g decreases very slowly under AM and never returns to the true value due to the
ongoing VCT. With spousal correlation of 0.4 (similar to that of educational attainment), for
example, the estimated h2g is 0.5, 0.3, and 0.27 in generations 11, 12, and 13 and eventually
asymptotes at ~0.17. In contrast, both the true direct effect and the estimated direct effect from
RDR is generally consistent with the true value of 0.04. In other words, not only is population h2g
inflated by gene-environment correlations in the current generation (i.e. converging to 0.17 due to
VCT, >4x higher than the true direct effect) population h2g can even be substantially inflated by
rGE from previous generations (i.e. starting at 0.5, >12x higher than the true direct effect).
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Thus, in the presence of AM or VCT, only the direct effect estimate has any interpretation in
the current generation; the population (and indirect) estimates will reflect an unknown
amount of additional genetic variance accumulated from prior generations. Similar issues will
be relevant for PGI-based estimates, especially when evaluated without family/genetic controls,
though without the extra inflation due to HE regression bias.

3.6 | A word on ongoing challenges for within-family analyses

The field is beginning to understand the relationships between AM, VCT, direct heritability, and
indirect correlations but many challenges to fully interpretable genetic estimates still remain:

● Assortment on a latent phenotype. As noted above, correction for AM requires knowing
the underlying genetic correlation between mates. If AM is occurring on an unmeasured,
more heritable, and genetically correlated trait then this will induce higher genetic
correlation in mates than expected. Understanding whether and when latent/genetic
assortment has occurred is thus important to properly correct estimates for AM. Related
work: (Torvik et al. 2022).

● Confounded direct/indirect correlations under ascertainment. Several studies have
observed puzzling and highly significant negative correlations between direct effects and
indirect associations (Cheesman, Eilertsen, et al. 2020; Barcellos, Carvalho, and Turley
2021; Bjørndal et al. 2023; Eilertsen et al. 2021; Young et al. 2022; Young 2023). Such
effects may have a causal explanation: the variation in parents that increases the trait in
them also decreases the trait in their children (for example, variants that influence
identifying depressive symptoms in children may also reduce depression in parents, as
hypothesized in (Cheesman, Eilertsen, et al. 2020)). An alternative non-causal explanation
was proposed in (Young et al. 2022), wherein collider bias is induced by ascertaining on a
phenotype (e.g. education) that is caused by direct and indirect effects and thus deflating
the true correlation between the two. In both cases understanding this process is
important as it’s either a complex negation of causal effects or a technical cofounder.

● Ascertainment and participation bias. A more general issue is the influence of
ascertainment and participation in the study on within-family estimates. As noted in (Veller
and Coop 2023), within-family direct effects are estimated from variants for which parents
are heterozygous, and will be biased relative to the population if those variants are
non-randomly distributed across family environments. This bias may, for example, be
induced by variants that correlate or cause participation in the study itself. Related work:
(Benonisdottir and Kong 2023)

● Cross-trait assortment. Most of the above findings consider AM and VCT on a single trait,
however, more complex scenarios exist when individuals mate on different traits (e.g.
wealthy men marry tall women), which will induce apparent non-causal relationships
between traits in children and the population. Similarly, cross-trait VCT (e.g. early cancer in
parents impacts education in children through socioeconomic status) could induce
apparent heritability in the children that has nothing to do with the focal trait (transmitted
variants that influenced cancer in the parents appear associated with education in the
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children). Related work: (Border, Athanasiadis, et al. 2022; Bilghese et al. 2023; Veller and
Coop 2023)

● Sibling indirect effects. Indirect effects from siblings (i.e. where a heritable trait in a
sibling influences the trait of the other sibling) will confound sibling difference / sibship
studies and estimates. Quantifying of sibling indirect effects has been limited, although
large effects have so far not been observed. Birth order may also play an important role in
these effects (e.g. older siblings having a stronger influence on young sibling traits).
Related work: (Young et al. 2022; Howe, Evans, et al. 2022).

● Larger and more accurate within-family GWAS. While many large population-scale
GWAS studies have been conducted and produced PGIs that approach the predictive limit
of heritability, within-family/sibling GWAS have so far been much more limited and “direct”
PGIs relatively weak. As a simple practical matter, larger family GWAS are needed to
characterize individual direct effects and construct more accurate PGIs. More accurate
direct PGIs would, in turn, provide an alternative approach to estimating components of
heritability that may be less susceptible to bias from AM. Related work: (The Within Family
Consortium n.d.)

● Properly accounting for subtle population structure. Several studies have contrasted
PGIs with geographic parameters to draw conclusions about rGE. This approach is
particularly vulnerable to biases from uncontrolled population stratification. Recent work
has shown that controlling for a large number of common variant principal components,
as is typical practice, may not be sufficient to address stratification. Related work: (Hu et
al. 2023)

● Accurately estimating direct effects without family data. Large-scale family data is
difficult to obtain and unavailable in all circumstances. In principle, knowing the genetic
correlations between direct and indirect effects as well as their precise variance estimates
may be sufficient to approximate direct effect estimates in population scale data.
Alternatively, decomposing direct effects into those that are entirely uncorrelated from
indirect effects may enable estimation of a population-scale “uncorrelated direct”
component.

● Analytical recovery of true parameters. Many of the above analyses are shown through
simulations because analytical derivations of trait variance have mostly not been derived
for both AM and VCT. This also poses a challenge for interpreting within-family results,
which are often presented as being possibly explained by AM or VCT or “genetic nurture”
or some mixture of all three, even though these mechanisms have substantially different
implications. Related work: (Herzig et al. 2023; Young 2023).

3.7 | Further reading

Methods/analysis:

● (Kemper et al. 2021): Evaluation of heritability across different family designs and
derivation of assortative mating corrections.

● (Kong et al. 2018): Seminal analysis of non-transmitted influences through polygenic
scores.
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● (Young et al. 2018): Relatedness Disequilibrium Regression (RDR) and analysis of
direct/indirect heritability.

● (Howe, Nivard, et al. 2022): Large, within sib-ship GWAS to estimate direct/indirect
heritability across many traits.

● (Torvik et al. 2022): Methods for estimating and modeling assortative mating in family
data.

Theory:

● (Veller and Coop 2023): Modeling and interpretation of potential biases in within-family
studies.

● (Herzig et al. 2023): Derivation of h2g inflation under assortative mating and cultural
transmission.

Commentary:

● (Feldman and Ramachandran 2018): Essay discussing classical estimates of heritability in
the context of cultural transmission.

● (Young et al. 2019): Overview of genotype/phenotype association models including direct
and indirect effects.

● (Burt 2022): Primer on the use of polygenic scores in behavioral genetics and critique,
together with several related commentaries and rebuttals.

● (Coop and Przeworski 2022a): Difficulties in interpreting direct and indirect effects as
explanatory variables for between-family differences.

🩺
The genetic architecture of

common traits

To orient ourselves and set expectations, let’s review what has been broadly observed regarding
the heritability and “genetic architecture” of common complex traits.
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4.0 | Summary

● Most common traits have modest but non-zero common SNP heritability (h2g). In a
large analysis of ~2,000 traits across ~500,000 individuals in the UK Biobank, the mean
h2g was 0.10, with ~90% of well-powered measurements having significantly non-zero
heritability.

● Most common traits are highly polygenic. The typical common trait is caused by
thousands of common variants and behavioral/psychiatric/anthropometric traits are
typically caused by tens of thousands of common variants, each of very small average
effect (O’Connor et al. 2019; Zhang et al. 2018).

● Most common variant h2g is non-coding. Coding variants explain <10% of the common
h2g for typical traits (Finucane et al. 2015), with the remaining heritability localized to
“regulatory” elements active in relevant tissues (Finucane et al. 2018) as well as broadly in
the body (Boyle, Li, and Pritchard 2017).

● The non-additive contribution of common dominance/recessive effects is negligible.
Multiple studies estimated the contribution of dominance h2g (on top of additivity) to be in
the range of 0.001-0.001, or 100-200x lower than additive h2g (Palmer et al. 2023;
Pazokitoroudi et al. 2021).

● The contribution of indirect effects to common h2g is typically low (<10%) for
non-behavioral traits. However, several traits stand-out as exhibiting a substantial
proportion of h2g attributable to indirect effects including: height, educational attainment,
cognitive function, and related behavioral traits (Howe, Nivard, et al. 2022). Shared
environmental effects not correlated with genotype in unrelated individuals are also
substantial on average across representative traits (Zaitlen et al. 2013).

● The contribution of geographic rGE to common h2g is typically low (<1%) for
non-behavioral traits. However, socioeconomic and cognitive traits exhibit substantial
apparent h2g explained by either passive rGE/stratification (>10%) or active rGE or some
mix of both (>20%), estimated through birth/residential addresses (Abdellaoui, Dolan, et al.
2022).

● Common traits appear to be under weak trait-specific selection with a proportionally
low contribution from rare variants. Evolutionary theory indicates that neutral traits are
expected to have very little rare variant heritability (Simons et al. 2018). On average across
traits the rare variant (<0.01) contribution to h2g is expected to be 5-20% (Schoech et al.
2019).

● Selection is likely to be pleiotropic across many traits. Estimates of selection across
traits exhibit lower variability than expected, suggesting that selection may be acting
indirectly through an underlying “latent” phenotype (Schoech et al. 2019; Simons et al.
2018). Models with a single underlying selective process and a small number of
parameters fit the observed data from many traits very well (Simons et al. 2022).

● Low frequency (0.005-0.05) variants explain less h2g and are much more likely to be
coding. Low frequency variants explain ~3% additional h2g on average, compared to 20%
for common variants (Gazal et al. 2018), consistent with weak selection. 27% of
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low-frequency h2g is coding variants, compared to 8% for common h2g, most of it in
highly enriched non-synonymous variants.

● Rare coding burden h2g is typically very small. (Weiner et al. 2023) estimated an
average rare coding burden h2g of ~1% across 22 common traits using large-scale exome
sequencing data. Common and rare coding h2g was correlated at 0.79, consistent with
weak and pleiotropic rather than trait-specific selection.

● In the first study of total h2g using sequencing data, the majority (>70%) of h2g was
common for both height and BMI, though the uncertainty was very high. The rare
variant heritability was also almost exclusively observed in coding variants (Wainschtein et
al. 2022).

● Twin and family-based estimates of (total, additive, direct) heritability are consistently
inflated. Twin study estimates of direct additive heritability are >2x inflated relative to
molecular estimates using RDR across a variety of traits (Young et al. 2018). Kinship
estimates (which may also include the effect of shared environment) are ~1.3x inflated.
Inflation in twin-based estimates has been observed with a variety of methods: (Zaitlen et
al. 2013; Kemper et al. 2021; Robinson et al. 2017; Coventry and Keller 2005).

4.1 | Common variant population h2g

Here’s what we can expect from common variant population heritability for a typical common trait:

Moderately heritable. Nearly every trait has some small but non-zero common variant h2g. In a
massive analysis of 2,419 unselected measurements across ~500,000 individuals the UKBiobank,
the mean h2g across all measurements was 0.10, and 89.9% of measurements with >100,000
samples (i.e. well-powered phenotypes) had significantly non-zero heritability estimates. On the
one hand, this implies that one should be generally aware of potential genetic influences for any
phenotype of interest. On the other hand, a typical common h2g of 0.10 also means that other
factors are generally much more important.

Highly polygenic. Most common traits appear to be highly polygenic, that is to be driven by an
extremely large number of causal variants. Multiple approaches exist for estimating polygenicity
(O’Connor et al. 2019; Weissbrod et al. 2020; Zhang et al. 2018; Zeng et al. 2018), typically by
studying the distribution of observed association statistics and matching them up to some model.
For a fixed total heritability, a “wider” distribution with more weak effects implies a higher
polygenicity. These approaches agree that most common traits are associated with thousands to
tens of thousands of common variants. For example, (O’Connor et al. 2019) estimated the
“effective number of causal variants” across a variety of representative traits, with a mean
estimate of 4,900. Behavioral traits were estimated to have the largest number of causal variants
(>10,000) and skin/hair/pigmentation estimated to have the lowest (100’s). These numbers are
likely an underestimate of the “true” polygenicity of the trait, given an expected long tail of very
weak effects which will contribute little to the “effective” number.

As GWAS sample size grows, polygenicity can be inferred directly by simply counting up the
number of independent associations. A recent GWAS of height was one of the first studies to
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identify nearly all individual common associations, using a sample size of 5.4  million individuals
(Loïc Yengo et al. 2022). In total, this produced a staggering 12,111 independent associated SNPs
within 7,209 non-overlapping genomic segments.

Effective number of causal variants estimated across a variety of common traits.
Traits are color-coded by broad phenotypic groups. Most traits are highly polygenic particularly for

behavioral/psychiatric traits. Data from (O’Connor et al. 2019)

Largely non-coding. In addition to quantifying the genome-wide h2g, we may be interested in
knowing whether certain regions of the genome harbor more or less of the h2g than others (see
[2.8]). Indeed, such “functional partitioning” analyses have revealed that ~90% of common trait
heritability resides in parts of the genome that do not directly code for genes, but rather
“regulate” the activity of nearby genes (Maurano et al. 2012; Finucane et al. 2015; Gusev et al.
2014). The fact that most trait-altering variants seem to operate through subtle regulatory
changes rather than direct genic effects has been one of the more surprising and challenging
aspects of common traits revealed by molecular data. In hindsight this is a logical consequence
of extreme polygenicity: if there are tens of thousands of variants influencing each trait and many
“traits” making up each human, it makes sense that these variants are acting in parallel via
millions of subtle shifts in expression rather than summarily turning genes “on” or “off”.

Heritability enrichment in regulatory elements across 89 traits and 10 cell type groups in the BioBank
Japan.

Significant common h2g enrichments (p<0.05) were averaged across multiple regulatory element types for
each trait - cell group pair. Enrichment defined as (% h2g / %SNP). Non-significant enrichments shown in

black. Data from (Kanai et al. 2018).

While trait h2g is enriched for regulatory elements that are generally active in the expected
tissues (e.g. in brain for neurological disorders; (Finucane et al. 2018)) it is still largely explained
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by regions that are broadly active across many tissues (Boyle, Li, and Pritchard 2017). As we can
see in the figure above, neuro/psychiatric traits like schizophrenia (SCZ), and bipolar disorder
(BD) are highly enriched for regulatory elements in the brain (CNS), as expected, but also for
elements in connective, adrenal, and gastrointestinal tissues. Likewise, brain/CNS tissues also
show enrichment for phosphorus levels (P) and anemia. In short, while trait h2g is highly
functionally enriched, individual traits still appear to operate through highly complex and
multifactorial mechanisms broadly active across tissues.

The combination of moderate common h2g, extreme polygenicity, and largely non-coding
mechanisms continues to be a major challenge for mapping common traits. A truly causal
understanding of genetic mechanisms will require data from very large sample sizes to identify
the catalog weak effects, as well as better models of the non-coding “grammar” by which
regulatory variants lead to trait differences.

A negligible contribution of dominance. Multiple studies have demonstrated nearly zero
contribution of common variant dominance to common trait h2g beyond that which is already
tagged by additive effects (Pazokitoroudi et al. 2021; Palmer et al. 2023). Roughly speaking, these
approaches work by converting additive SNPs into “dominance residuals” (the bits of dominance
that are not explained by an additive effect) and then adding those residuals into h2g estimators
as if they were new variants. An LDSC-style analysis of summary-statistics from ~1,000
phenotypes in the UK Biobank found that mean dominance h2g was 0.00076 compared to a
mean additive h2g of 0.088 (Palmer et al. 2023). An HE-regression-style analysis of
individual-level data across 50 representative heritable traits similarly found a mean dominance
h2g of 0.0013 compared to a mean additive h2g of 0.22 (Pazokitoroudi et al. 2021), shown in the
figure below.

Negligible dominance h2g for common heritable traits.
Additive h2g estimates shown in orange and compared to dominance h2g estimates shown in blue. Figure

from (Pazokitoroudi et al. 2021)
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The negligible contribution of dominant (or recessive) effects has been another genetic surprise:
why don’t some variants function only when both copies are present (or absent)? But together
with common h2g being largely non-coding and modifying traits through subtle changes in
transcription, additivity – that two copies generally just do twice as much as one copy – seems
quite plausible.

4.2 | Direct heritability

The most accurate and comprehensive estimates of total direct h2g to date were obtained in
(Young et al. 2018), by separately applying RDR to IBD segments (total genetic material) and SNPs
(common genetic material) across a wide range of traits known to be heritable. On average
across the traits, RDR-IBD estimated total direct h2g at 0.30, which was 1.15x higher than the
average RDR-SNP estimate of common direct h2g at 0.26, indicating that ~15% additional direct
heritability may reside in rare variation that is not tagged by common SNPs (not counting the very
rare variation RDR-IBD cannot capture). Interestingly, twin study estimates (which intend to
quantify the direct additive component and partition indirect effects into a separate shared
environment component) were 2.1x higher than RDR. As posited in (Young et al. 2018), these
findings indicate that twin studies systematically and greatly overestimate additive heritability.

Average estimates of total heritability from different methods across 9 traits.
RDR and Twin methods intend to estimate the direct additive effect of all variants; RDR-SNP estimates the
direct additive effect of common variants; Sib-Reg intends to estimate the direct additive and non-additive
effect of all variants; RELT-SNP estimates the total (direct and indirect) additive effect of common variants;
and Kinship estimates some mix of genetic and environmental effects. Due to the analysis of multiple
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traits, assortative mating was not adjusted for, but all family conditional estimates (RDR, RDR-SNP, Sib-Reg,
Twin, and to some extent Kinship) will exhibit similar downward bias from AM. Averages reported over 9

traits that had estimates from all methods. RDR-IBD: RDR from IBD segments; RDR-SNP: RDR from
common SNPs; RELT-SNP: REML from common SNPs with adjustment for relatedness; Kinship: relatedness
only; Sib-Reg: Within sibling regression; Twin: Additive term from classical twin study. Data from (Young et

al. 2018)

RDR-IBD direct
total h2g

RDR-SNP direct
common h2g

RELT-SNP
common h2g

Kinship “h2” Sib-Reg h2 Twin (A)

0.30 0.26 0.30 0.41 0.36 0.63

While the RDR analysis was unique in leveraging IBD to estimate total direct h2g but was
hampered by large standard errors for individual traits, (Howe, Nivard, et al. 2022) estimated
common direct h2g using a much larger within-family GWAS across 178,086 pairs of siblings.
Average shrinkage of direct to population common h2g across all traits was just 0.98, indicating
that population-scale GWAS heritability is typically estimating a similar quantity to within-family
(i.e. direct) GWAS heritability. However, several traits stood out in having significantly lower
within-family h2g: height, IQ test ability, educational attainment, and age at first birth (often
correlated with socioeconomic status). All but height are behavioral traits where
indirect/environmental influences are to be expected. For traits not undergoing AM, the excess
population h2g relative to within-family h2g can be interpreted as evidence of vertical cultural
transmission (VCT) (see [3.5]). However, many behavioral traits do show evidence of strong AM (in
particular IQ test ability, educational attainment, and socioeconomic status) which complicates
this interpretation. These estimates will be considered in more detail in subsequent sections.

Population and within-family estimates of common h2g for traits with substantial shrinkage.
The average across all 25 evaluated traits shown at the bottom. Confidence Intervals shown in

parenthesis. Traits for which confidence intervals do not overlap are shown in bold. Data from: (Howe,
Nivard, et al. 2022)

Trait Population h2g Within-Family h2g % reduction

Height 0.41
(0.37, 0.45)

0.34
(0.30, 0.38)

17%

IQ test ability 0.24
(0.18, 0.30)

0.14
(0.05, 0.22)

42%

Educational Attainment 0.13
(0.12, 0.15)

0.04
(0.02, 0.05)

77%

Age at first birth 0.07
(0.04, 0.10)

0.00
(-0.07, 0.07)

100%

Depressive Symptoms 0.05
(0.03, 0.08)

0.04
(-0.01, 0.10)

-

Smoking 0.05
(0.01, 0.10)

0.07
(-0.02, 0.16)

-

Average of 25 traits: 0.12 0.11
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An interesting incidental finding came from the analysis of population structure, which was
thought to be accounted for by within-family analyses. Surprisingly, the influence of stratification
on within-family heritability was estimated at 21%, lower than the 42% estimated for
population-level analyses but still substantially higher than zero. The explanation for this structure
remains unknown and could be as simple as the covariates used in the GWAS or mismatch in the
way LD was treated in estimating h2g, but it does suggest that stratification (and likely some
inflation in h2g) may still be an issue even in within-family analyses.

Shared environment effects in the absence of indirect effects

Why don’t we see indirect effects for environmentally mediated traits like cholesterol levels or
asthma? The lack of large-scale indirect effects on most non-behavioral traits should not be
interpreted as the complete absence of shared environmental effects. Population scale h2g
estimates of unrelated individuals are only biased by environmental confounding that is
correlated with genotype in unrelated individuals (i.e. through vertical cultural transmission from
their parents). Environmental influences that are shared across relatives but are uncorrelated
with genotype or dissipate at the population level will not be captured by either population
h2g or within-family h2g and will simply be attributed to random environmental variance (see
[2.7]). To investigate shared/familial environments (Zaitlen et al. 2013) estimated heritability across
a wide range of relationship pairs in an Icelandic cohort under a model with no environmental
sharing. Across 17 representative (and largely non-behavioral) phenotypes, they observed
multiple relationship classes with significant differences in heritability estimates, with closer
relationships consistently yielding larger heritability estimates. For example, heritability estimated
between siblings (expected to be twice their phenotypic correlation under a model with no
shared environment) was 0.14 larger than heritability estimated between a child and grandparent.
These decreases in estimated heritability were not consistent with either dominance or epistasis
effects, and were thus attributed to a substantial contribution from the shared environment.

Differences in estimated “heritability” from different relatedness classes.
Each row shows a pair of relationships; the difference in heritabilities estimated using relationship 1 minus

that estimated using relationships 2; as well as the standard error and p-value for the difference.
Significant positive differences indicate that either shared environment or non-additive genetic effects are

increasing the apparent heritability at close relatives. Data from (Zaitlen et al. 2013).

Relationship 1 Relationship 2
h2 in Rel1

minus h2 in Rel2 s.e. p-value

sib half-sib 0.02 0.06 NS

sib first-cousin 0.04 0.03 NS

sib grandparent 0.14 0.04 2.9E-04

sib parent 0.08 0.03 1.4E-03

sib avuncular 0.15 0.03 3.7E-09

half-sib first-cousin 0.02 0.06 NS

half-sib grandparent 0.12 0.06 3.0E-02

half-sib parent 0.06 0.06 NS
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Relationship 1 Relationship 2
h2 in Rel1

minus h2 in Rel2 s.e. p-value

half-sib avuncular 0.13 0.06 3.0E-02

first-cousin grandparent 0.10 0.04 2.0E-02

first-cousin parent 0.04 0.04 NS

first-cousin avuncular 0.11 0.04 4.2E-03

grandparent parent -0.06 0.03 5.0E-02

grandparent avuncular 0.01 0.03 NS

parent avuncular 0.07 0.02 7.6E-05

Several main conclusions can be drawn from this analysis. First, the shared environment clearly
impacts the phenotypic relationships across close relatives (even if it is mostly not observed in
population-scale h2g estimates). Second, estimators of heritability that include close relatives will
be confounded by shared environment correlations and are not, in and of themselves, indicative
of genetic influences. Third, estimators of heritability that focus on very close relatives, or that
ignore relationships between more distant relatives, will be even more confounded by the shared
environment.

4.3 | Heritability explained by environmental confounding/rGE

To investigate the components of common h2g that could be explained by rGE through
measurable environments, (Abdellaoui, Dolan, et al. 2022) utilized “conditional” GWAS and
heritability analyses adjusted for geographic location across a wide range of traits. Granular
regions, clustered to be geographically and economically homogeneous, were used as proxies
for passive environments, and considered for both birth and current address (the latter potentially
capturing both passive and active rGE). What should one expect from such an analysis? If
geographic location captures environmental variation that is independent of genetics, then h2g
should increase; whereas if geographic location captures environmental variation that is
correlated or confounded with genetic variation, then the h2g should decrease (see [3.2]).

The results exhibited a striking pattern between conventional anthropometric traits (height,
weight, blood counts) and behavioral traits (education, IQ test performance, work satisfaction).
Behavioral trait h2g decreased substantially: by 12% after adjusting for birth region and 24% after
adjusting for birth and current region. In contrast, anthropometric trait h2g decreased ~3% after
adjusting for both birth and current region. Note that current address adjustments will account for
both passive and active rGE and may potentially induce some collider bias. Overall, these
findings provided clear evidence for either confounding or mediation between genetics and
environment for behavioral traits.

Heritability estimates before/after conditioning on birth region, current region, or both.
Average of estimates for two classes of traits. Raw estimate corresponds to no correction except standard
covariates and ancestry. Each estimate is followed by the % of heritability relative to the raw estimate.
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Results shown for the MSOA analysis, which produced larger deviations. Data from (Abdellaoui, Dolan, et
al. 2022).

Raw Birth Region Current Region Birth + Current

h2 h2 % h2 % h2 %

Anthropometric
& Cardiovascular 0.19 0.19 99% 0.19 97% 0.19 97%

Cognitive
& Socioeconomic 0.10 0.09 88% 0.08 80% 0.08 76%

It is possible that the decrease in h2g is evidence of population stratification rather than rGE and
this possibility was investigated through sensitivity analyses. First, the depletion in h2g was much
lower when adjusting for longitude/latitude instead, suggesting that geography alone did not
capture the environmental confounders at play here (as would be expected from simple
geographic stratification). Second, the inclusion of a large number of genetic ancestry
components also did not substantially alter the results. The proposed mechanism for passive rGE
was that heritable behavioral traits drive individuals to live in certain environments, which in turn
shape the behavioral traits in their offspring and induce a gene-environment correlation. It’s worth
noting that association of genetic variation for behavioral traits is generally very small: after
adjusting for both regional values, the mean common h2g was only 0.08 (compared to 0.19 for
anthropometric traits). It remains to be seen to what extent the excess variance attributed to rGE
can either be explained by unmodeled stratification or further amplified with more granular
socioeconomic/environmental measurements.

4.4 | Natural selection and expectations for rare variants

While natural selection is often classically thought of as influencing individual variants, the
primary mode of selection on common variation in complex traits appears to be weak polygenic
selection. Polygenic selection acts on the trait optimum value and can thus subtly shift the entire
distribution of trait-affecting variants. For large-effect variants that shift the trait away from the
optimum, negative selection will drive them to lower frequencies (Simons et al. 2018). At a fixed
trait heritability, we should thus expect traits under stronger selection to have more “rare
heritability” compared to traits under weaker selection (or, alternatively, for the fraction of
common h2g to be lower). As an extreme example, one can think of rare mendelian disorders for
which the total heritability is explained by a handful of very rare mutations.

Several approaches have been used to estimate the evidence for selection on complex traits,
typically by evaluating whether large-effect variants tend to be rarer than expected. (Schoech et
al. 2019) inferred a scaling parameter relating frequency to effect size and estimated a mean
scaling coefficient of −0.38 (s.e. 0.02), corresponding to weak selection where variants <1% MAF
explain only 8.9% (s.d. 2.7%) of total h2g (see figure). This estimate may be an upper bound, as
the model was shown to overestimate the contribution of rare variants in simulated models of
natural selection.
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Expected h2g explained by rare variants under different levels of selection in simulations.
(left) Expected fraction of h2g from sites more common than (x) for different selective coefficients: neutral
(S=1), weak (S<30), strong (S=100). (right) Expected fraction of h2g from sites less common than (x) under
different frequency-effect relationships. When variant effects do not increase with allele frequency (α=0),
the contribution of rare variants to total h2g is very small (<1%). Mean estimate across 25 traits is −0.38,
marked with a red dot, corresponds to 8.9% of the trait heritability attributable to rare (MAF<1%) variants.

Left panel from (Simons et al. 2018); right panel from (Schoech et al. 2019)

Across traits, (Schoech et al. 2019) also observed that the variance in the estimated scaling
parameter was significantly lower than expected, consistent with “pleiotropic” selection either
acting similarly on multiple traits or on an underlying correlated latent “fitness” trait. More
recently, models have been proposed that relate heritability and polygenicity to selection across
traits (Simons et al. 2022). When applied to real data, a small number of parameters can provide a
good fit to the effect size distribution for many common traits, lending further evidence for
pleiotropic selection. Thus apparent selection on any individual common trait is expected to be
weak and indirect.

It is worth noting that the scaling parameter merely defines the relationship between frequency
and effect size and it is not a complete evolutionary model. Even though strong directional
selection may be ruled out, one parameter can still be compatible with many different models of
natural selection (see (Koch and Sunyaev 2021) and figure below). This is especially true when
stabilizing selection is pleiotropic and fitness effects are driven by unobserved genetically
correlated traits (see much more discussion of natural selection in [8.0]).

Relationship between the alpha model and the true distribution of fitness effects (DFE) in simulations.
Each panel shows the relationship between trait effect sizes (β2), allele frequency (x), and the inferred

scaling parameter (alpha, listed) under a variety of evolutionary models. Figure from: (Koch and Sunyaev
2021)
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4.5 | Low-frequency variant h2g partitioning

Another way to evaluate the influence of selection is by contrasting variant frequencies in
functionally important versus less important regions (for example, coding versus non-coding). We
can think about this like the classic Survivorship Bias example, where bullet holes on an airplane
that has returned safely from battle point to the parts of the plane that are not important to its
function. Common standing variation that has survived negative selection is likely to be operating
through functional elements that are less important to the trait. In contrast to the airplane though,
trait associated variants will, by definition, reside in regions that do some thing (as we saw from
the enrichment of heritability in regulatory elements above), but there will be fewer of them in
regions that do important things and regions that do important things will explain less heritability



in total. As we move to lower frequency variants, which will include more variants doing important
things that have been “pulled down” by negative selection, we expect to see more variants in the
important regions of the genome and larger per-variant effects on the trait. For lower frequency
variants, proportionally more of the trait heritability will be explained by variants in important
regions. In contrast, under complete neutrality we would expect to see similar functional
enrichments across all frequencies as functional variants drift around arbitrarily. Note that
“importance” here is always in the context of selection and overall fitness; regions or traits that
are irrelevant to fitness will operate as if under neutrality.

Illustration of “survivorship bias” on common variant heritability under negative selection.
Common variants (red) and heritability will be enriched in regions that are functional relative to those that
are completely non-functional (gray) but there will be fewer common variants in regions that are very
important (orange) and they will tend to contribute less to heritability in total. Low frequency and rare
variants will be more numerous in very important regions, have larger effect sizes, and contribute

proportionally more to heritability.

The functional enrichment of heritability in low-frequency variants (0.5%-5%) was estimated and
contrasted with common variant enrichment in (Gazal et al. 2018) across 40 traits in the UK
Biobank. First, common variants had >6x more h2g (0.20) on average compared to low frequency
variants (0.03), even though the total number of common variants (5.3M) was only 1.6x larger than
the total number of low frequency variants (3.4M). This is consistent with weak selection allowing
most trait heritability to be common.

Low-frequency trait heritability and functional enrichment across 40 common traits.
(left) Total low frequency (y-axis) and common frequency (x-axis) h2g for each trait. Solid lines show

different frequency/effect-size relationships and the dashed line corresponds to the average across traits,
roughly consistent with -0.38 observed in (Schoech et al. 2019). (right) Low frequency (y-axis) and common
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frequency (x-axis) functional enrichment across different functional categories (colors) averaged across all
traits. Figure from (Gazal et al. 2018)

Second, consistent with the action of negative selection, low-frequency coding variants were
more enriched for low-frequency heritability (14x, 26% of h2gLF) than common frequency coding
variants (6x, 8% of h2gCF). The difference was even more striking when restricting to
non-synonymous variants: 38x (17% of h2gLF) compared to 8x (2% of h2gCF), consistent with more
low-frequency enrichment at more “important” sites. Extrapolating out, we should thus expect low
total h2g for rare variants as well as a greater fraction of (>26%) in coding regions and,
specifically, at non-synonymous positions in coding regions.

4.6 | Rare coding burden h2g

Rare variation is primarily measured using whole-genome sequencing or whole-exome
sequencing, the latter capturing only mutations in coding regions. To date, large-scale rare variant
analyses have focused on exome-sequencing studies due to their lower cost. As noted above,
theory indicates that coding regions should capture a large fraction of rare variant heritability,
particularly for traits under selection, and thus exome analyses provide a useful snapshot of rare
variant heritability.

Recently, a comprehensive analysis of rare variant burden h2g was carried out applying Burden
Heritability Regression (see [2.4]) to ~300,000 exomes from the UK Biobank (Weiner et al. 2023).
Across 22 common traits, rare coding variant burden h2g was 1.3% (s.e. 0.03%) on average, most
of which was explained by ultra-rare loss-of-function mutations. Average common variant h2g
across these same traits was 16%, thus common variants explained 12x more h2g than rare
burden, and (as reported in the previous section) 6x more h2g than low-frequency variants;
consistent with weak selection allowing most trait-affecting variants to remain common or
low-frequency. Moreover, common and rare burden h2g estimates were highly correlated
(Pearson r=0.79), indicating that low common h2g traits generally have low rare h2g and again
consistent with pleiotropic rather than trait-specific selection. Taking the 26% of low-frequency

https://paperpile.com/c/UwWSe8/2XWOP
https://paperpile.com/c/UwWSe8/FO1Ls


h2g that was assigned to coding regions from (Gazal et al. 2018) as a lower bound, this would set
an expectation of 1.3% / 26% = 5% of trait variance or less explained by all rare variants on
average.

Estimates of common variant and rare coding burden heritability across 22 common traits.
Mean common h2g of 16% compared to mean rare coding burden h2g of 1.3% and a correlation of 0.79.

Figure from (Weiner et al. 2023).

While these estimates are highly precise, they are still restricted to a single cohort, a relatively
small number of traits, and merit further replication with other approaches. However, the general
finding that coding variant h2g is low does appear to be consistent with several independent
analyses:

1. Analysis of common variants in the n=~220k FinnGen cohort identified 275 independent
GWAS associations across 15 selected diseases (~18 per trait) (Kurki et al. 2023). In
contrast, analysis of rare coding variants in n=~650k exomes combining both FinnGen
and UK Biobank identified 975 associations across 744 disease endpoints (~1.3 per trait).
A 3x larger rare variant association study still produced >10x fewer associations per trait.

2. Common variant GWAS has generally identified many more associations than rare variant
analyses. For example, GWAS of height in the UK Biobank identified 2,098 independent
associations (Loh et al. 2018); compared to rare exome analysis in the same data
identifying just 61 genes (Backman et al. 2021). Statistical power to detect rare variant
associations is lower than for common variants, so this observation is necessary but not
sufficient evidence of low rare h2g.

3. (Fiziev et al. 2023) constructed polygenic scores using functionally weighted rare coding
variants and common GWAS variants across 78 quantitative phenotypes in the UK
Biobank. On average common scores explained 10.1% of phenotypic variance, compared
to just 0.4% for rare burden scores. Individual rare variants often had large effects, but
collectively explained very little of the trait variance.
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In short, multiple lines of evidence indicate that the contribution of rare coding variants to the
heritability of common traits is very low.

4.7 | Whole-genome h2g

Few studies have quantified the total (rare and common) population h2g for common traits, which
requires the measurement of every variant in the genome across tens of thousands of individuals.
The most extensive analysis so far was conducted by (Wainschtein et al. 2022) for height and BMI
in ~25,000 whole-genomes from individuals of European ancestry. Collecting and studying that
many genomes was a remarkable feat, producing a trove of 31.3 million variants, of which the vast
majority – ~25 million – were rare variants below 1% frequency.

What did these 25 million rare variants reveal about heritability? The results were both consistent
with expectations and surprising. The total h2g of height was estimated at 0.68 (of which 70%
was common) and the total h2g of BMI was estimated at 0.32 (of which 75% was common). Both
estimates were significantly lower than values that had been observed in prior family or twin
studies: 0.82 (family), 0.93 (twins) for height (Kemper et al. 2021); and 0.50 (family), 0.75 (twin) for
BMI (Robinson et al. 2017). Note that all estimates were determined using GREML, which is not
expected to be strongly impacted by assortative mating at this sample size (Border, O’Rourke, et
al. 2022). Thus, as observed in (Young et al. 2018) and other studies, twin-based estimates
continued to show 1.5-2x upward bias relative to these total h2g estimates.

Common and rare population h2g estimates for height and BMI from whole-genome sequencing data.
Total h2g: Primary reported result from an analysis of 12 GRMs and 48 WGS principal components.

Functional: Secondary result using 11 GRMs but splitting protein-altering and non-protein-altering variants.
Common h2g: Estimate from ~1M representative common variants only. UKBB: Estimate in the UK Biobank
using rare coding variants from exome sequencing and common non-coding SNPs. Previous kinship/twin:
Estimates from family-based studies (including shared environment) and classical twin studies in prior

work. All “h2g” estimates are population-level (not direct). Data from (Wainschtein et al. 2022).

Trait Total h2g Total h2g
(functional
partition)

Common
SNP h2g

% Common UKBB
SNP+exons

h2g

Previous
kinship h2

Previous
twin h2

Height 0.68
(0.10)

0.61
(0.10)

0.48
(0.02)

70% 0.59
(0.04)

0.82
(0.04)

0.93

BMI 0.32
(0.10)

0.24
(0.10)

0.24
(0.02)

75% 0.31
(0.04)

0.50
(0.03)

0.75

Further partitioning the heritability into coding/non-coding variants and by allele frequency
revealed that rare variant h2g was almost exclusively in coding variants, with the contribution
specifically assigned to rare non-coding variants not significantly different from zero for either
height or BMI (see figure below). This matched the expectation from prior analyses and theory
that the proportion of coding heritability would increase for lower frequency variants.
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Heritability per variant for different functional, frequency, and LD variant classes.
The h2g per variant/SNP is shown on the x-axis for different variant classes and frequencies. Coding

variants highlighted in red. Figure from (Wainschtein et al. 2022).

The big surprise here was the total rare variant h2g accounting for an additional 25-30% of total
h2g, when prior models had anticipated only 5-10%. The higher than anticipated rare variant h2g
could imply that (a) selection is stronger than expected, (b) models from common/low-frequency
variants do not capture the full complexity of the evolutionary process, (c) population stratification
across rare variants was not fully addressed, (d) simply that the whole-genome estimates are still
very uncertain. The estimates are also frustratingly reliant on somewhat ad hoc parameter
choices. The study employed heritability partitioning across a large number of components to
address potential frequency/LD biases (see [2.3]) but different parameter values could
substantially change the estimates. For example, a sub-analysis that simply further divided the
coding variants into components for protein-altering versus non-protein-altering (as in the figure
above) reduced the total h2g for height from 0.68 to 0.61 and for BMI from 0.32 to 0.24. Whereas
removing outlier individuals from the relatedness matrix substantially increased both estimates.
With the confidence interval on the estimate for height ranging from 0.48 (implying no rare
heritability) to 0.88 (implying a large rare variant contribution), the definitive estimate of rare
variant h2g remains to be quantified with larger data and for more traits.

4.8 | A word on heritability in animals

[🔥I am a human geneticist and this is just a cursory survey of findings from animal genetics]

Finally, it may be of interest to contrast the h2g estimates we see in humans with heritability
estimates in non-human animals. In agriculture, very large pedigrees and detailed phenotypic
records enable highly accurate estimates of pedigree heritabilities (“h2”; which are expected to
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capture the total genetic contribution to the phenotype as well as any environmental
confounding [see 2.6]). (Oliveira Junior et al. 2021) recently estimated the pedigree heritability
across >500,000 records and 67 traits in Canadian Holstein cattle. For many trait classes these
estimates were surprisingly similar or even lower than estimates from humans: biometric traits
(height, length, etc) had mean h2 estimates of 0.23; health traits had mean h2 estimates of 0.05;
and fertility related traits had mean h2 estimates of 0.03-0.08. Only traits related to milk
production, which are critical for profitability and thus under careful optimization by the industry,
had an appreciable mean h2 of 0.43 largely driven by high h2 for fat and protein content. Of
course, the level of environmental control and health management is substantially different in
the farm setting, but it is notable that non-production traits often have pedigree h2 < 10% and
even many production traits have pedigree h2 < 50%.

Pedigree heritability for 67 traits from Canadian Holstein cattle.
Estimates taken from (Oliveira Junior et al. 2021)

Observations in natural animal populations have demonstrated that h2 estimates can be
substantially impacted by the amount of environmental heterogeneity, indirect (particularly
maternal) effects, and the statistical methods used (L. E. B. Kruuk 2004). In particular, estimates
from close relatives were consistently higher than from variance components across the full
range of relatedness (aka the “animal model”) for example: a mean of 0.41 from parent/offspring
regression versus a mean of 0.28 from the animal model (L. E. B. Kruuk 2004); or a mean of ~0.58
from full-sib regression versus a mean of ~0.30 from the animal model (Postma 2014). This mirrors
a similar observation across relative classes in humans (see [4.2]). The h2 of personality and
behavioral traits, in particular, has been studied across a range of organisms, with a large-scale
meta-analysis reporting a mean h2 of 0.24 for personality traits in domesticated populations and
0.34 for wild populations (Van Oers and Sinn 2013); and a similar mean h2 of 0.31 for behavioral
traits (Stirling, Réale, and Roff 2002). Interestingly, and in contrast to human molecular estimates,
major components of behavioral h2 were explained by dominance, particularly for the
domesticated animals (Stirling, Réale, and Roff 2002); dominance heritability may alternatively be
conflated with shared environmental effects or vice versa (X. Chen et al. 2015). See much more
discussion of potential environmental confounding in animal studies in [8.9]. In short, h2
estimates in animals are generally on the low/moderate side with variance
component/”animal model” estimates significantly lower than classical family regression
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estimates and impacted by the modeling of dominance: all suggesting that shared
environment confounding is at play.

4.9 | Further reading

Broad overview:

● (Price, Spencer, and Donnelly 2015): Broad review of progress in disease genetics.
● (Lappalainen and MacArthur 2021): Broad review of functional findings from disease

genetics.
● (Visscher et al. 2012, 2017; Abdellaoui et al. 2023): Periodic review of findings from GWAS.

Representative analyses:

● (Kanai et al. 2018): Representative analysis of heritability across many traits and functional
features in the BioBank Japan.

● (Howe, Nivard, et al. 2022): Largest multi-trait within-family GWAS to date with multiple
follow-up analyses.

● (Weiner et al. 2023): The first rare coding burden heritability quantification, across many
traits in ~300,000 exomes from the UK Biobank.

Conceptual models of trait architecture:

● (Boyle, Li, and Pritchard 2017): A perspective and analysis on a proposed “omnigenic”
model of disease where nearly every region harbors an association that is active in many
tissues/cell types.

● (Wray et al. 2018): Response to the above perspective piece arguing that common
disease is unlikely to be explained by network effects on a smaller number of “core”
genes.

● (Simons et al. 2022): Model of pleiotropic balancing selection on multiple traits.

🎓
The heritability of educational
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attainment

Across the genetic architecture of common traits [Section 4], behavioral traits consistently stand
out in exhibiting large rGE mediation and indirect effects. It is not a coincidence that behavioral
traits also tend to exhibit environmental specificity, cultural transmission, and assortative mating –
all factors that lead to gene-environment confounding. Educational Attainment (EA) is, in this
sense, the prototypical confounded trait: it has some of the highest assortative mating of any
measurement (r=0.45), almost as high as birthplace or parental age, and much higher than
cognitive phenotypes like IQ test performance (r=0.23) (Horwitz et al. 2023); it exhibits
substantial, complex, and multigenerational cultural transmission (Kroeger and Thompson 2015);
it is geographically clustered (Domingue et al. 2018), and correlates with many downstream
outcomes (Zajacova and Lawrence 2018). EA is also relatively straightforward to define, measure,
and conceptualize and has thus been extensively studied in genetic analyses including some of
the largest GWAS of any trait. EA thus presents an opportunity to understand patterns of
heritability for an important culturally driven phenotype with ample data and statistical power.

5.0 | Summary

● The total effect of genetics on Educational attainment (EA) is very small. The best
molecular estimate of the direct additive effect of all genetic variation on educational
attainment is 9-17% (Young et al. 2018). Conservatively correcting for potential bias due to
extreme latent assortative mating still produces an estimate of 15-16%.

● For common variants, the direct heritability of EA is just 4%, estimated within siblings
(Howe, Nivard, et al. 2022), compared to an environmentally confounded population
heritability of ~15%. EA has some of the lowest direct SNP heritability and the largest
environmental confounding of any tested phenotype.

● Consistent with confounding via dynastic/family environment, PGI prediction accuracy
(i.e. the association of genetics) decreases by 50-75% after accounting for parental
genetic values (Kong et al. 2018; Young et al. 2022) and by 50% when evaluated in
adoptees (Cheesman, Hunjan, et al. 2020).

● Gene-environment confounding can be entirely (Willoughby et al. 2021) or largely (Kong
et al. 2018; H. Liu 2018; B. Wang et al. 2021) explained by cultural transmission of EA
from parents. Further attenuation is also observed when adjusting for EA/socioeconomic
status composites or geographic regions. Cultural transmission is thus supported by
orthogonal approaches including: (1) within-family AM correction, (2) environmental
conditional analyses, and (3) adoption studies.

● Cultural transmission and environment is much more important than genetic
transmission. Under models of phenotypic assortative mating and cultural transmission,
cultural transmission explains 2-6x more variance than genetic transmission. Other
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environmental factors can explain 7-18x more variance in the trait than genetic factors,
consistent with the low direct h2g. (🔥: estimates from a simple cultural model).

● The association of common genetics with EA becomes weaker in higher resource
environments: Multiple large studies have found that the common h2g of EA decreases
by as much as 2x when measured in a high-SES versus low-SES environment (Mostafavi
et al. 2020). The within-family predictive accuracy of the PGI decreases 4x between the
lowest achieving and highest achieving schools (Cheesman et al. 2022). Resources
appear to make genetics less, rather than more, important. (🔥: statistical interactions may
not reflect biological interactions: see [1.2]).

● The genetic association of EA with other traits is also largely through
indirect/environmental correlations. While statistically significant, the contribution is
negligible: the most accurate EA PGI explains <3% of the variance in non-EA phenotypes
and <1% in non-behavioral phenotypes after accounting for indirect associations.

● Studies interpreting PGI-offspring associations as “natural selection” (J. P. Beauchamp
2016) are getting the causality backwards and the direct genetic of EA on fertility is
negligible at just ~0.3%.

● After controlling for population stratification, recent natural selection on EA is not
significantly different from zero (Howe, Nivard, et al. 2022). Under weak natural
selection, the vast majority of EA heritability is expected to be common.

● EA variants are broadly active in many tissues. While genes/regulatory elements
expressed in the brain are the most enriched for EA h2g, they explain less h2g in total
than broadly expressed genes. It remains unknown to what extent these variants may be
acting through explicitly non-cognitive mechanisms such as discrimination on
pigment/height/weight.

● In a study of 300,000 sequenced exomes, rare variants contributed negligibly to EA
heritability and entirely via developmental disability genes (C.-Y. Chen et al. 2023). The
rare burden h2g (see [2.4]) for EA was estimated at <0.0025. All six rare variant genes
associated with EA had negative effects, four of which were previously identified in
studies of neuro/psychiatric disorders.

● The most recent EA PGI achieves 88% of the theoretical maximal predictive accuracy,
current PGI-based findings are thus close to the highest achievable associations.

5.1 | Rationale

Let’s start with the basics: how is EA defined? In the most recent GWAS (Okbay et al. 2022) the
definition is very simple: educational steps are recoded as a continuous variable roughly
corresponding to the years of schooling. Genetic variation is then tested for association with this
continuous “Edu Years” value or a second “College Attainment” phenotype. We can already see
some challenges for interpretation since educational milestones are, in truth, more like ordinal
transitions rather than continuous values: is the difference between high school and “some
college” (2 points) really half the difference between a bachelor’s degree and a doctorate (4
points)? These milestones also differ by country and time of measurement (see also [5.4] below):
for example, in the UK CSEs were replaced by GCSEs; which are both treated as equivalent to
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“less than high school” in the US. In short, the final phenotype is something like a relative/rank
quantification of how many majormilestones of education the participant has attained.

Phenotypic coding of Educational Years in (Okbay et al. 2022)

The rationale for collecting this crude phenotype is, essentially, that it’s easy and accessible
(Rietveld et al. 2013). Since extremely large studies are needed to identify genetic associations
with polygenic traits (for example, 5 million individuals to saturate the common genetic
architecture of height in (Loïc Yengo et al. 2022)) and EA is routinely collected in biobank surveys,
it presents an opportunity for very large and well-powered analyses. Of course, EA is not just any
phenotype, it is often presumed to be a proxy for “intelligence” (however you define that) or at
least “test taking/IQ” and thus a “backdoor” into the genetics of cognitive function (Flint and
Munafò 2013) (we will interrogate whether this assumption was supported by the data in later
sections).

Should we expect educational attainment to be heritable at all? First, as we saw in [4.1], nearly
every common trait has some non-zero h2g (at least population-level h2g), so the baseline
answer is “yes”. Second, we know both common and rare genetic variants exist that predispose
individuals to various diseases, some of which occur early in life and make it difficult to move
through the steps of educational attainment. These causal genetic associations may have nothing
to do with cognitive function whatsoever, simply imposing physical/structural barriers for an
individual to advance from high-school to college and so on. Since h2g alone does not tell us the
mechanism, the genetic variation associated with these diseases would aggregate into non-zero
h2g for EA. Thus, the relevant question is: to what extent and by what causal mechanisms is
EA heritable in a general, healthy population?

5.2 | Direct heritability
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In the presence of cultural transmission and assortative mating only the direct estimate of h2g
retains any causal interpretability, and even there we need to be careful (see [3.0]), so let’s start
with what is known about direct h2g from family-based molecular analyses.

Total direct heritability

(Young et al. 2018) developed and applied Relatedness Disequilibrium Regression (RDR, see [3.2])
to Icelandic family data to estimate the nearly total direct h2g of EA. “Total” refers to the
association with all inherited genetic material regardless of frequency, and was enabled by the
unique availability of high-quality Identity-By-Descent (IBD) segment measurements. Such
segments will capture any variation transmitted along with the segment, including structural
variation or other atypical variants. “Nearly” refers to the fact that IBD sharing will not capture
extremely rare genetic variation that arose after the common ancestor for an IBD segment,
estimated to miss ~10% of rare variant h2g in simulations. As rare variation contributes to a
minority of trait heritability (see [4.6, 4.7] and [5.10] below for EA) these missed ultra rare/recent
variants are generally not expected to greatly impact the estimates.

The (nearly) total direct h2g for EA was 0.09 estimated with HE-regression and 0.17 when
estimated with REML with wide confidence intervals. Direct h2g estimated using only common
variants was 0.17 with REML (the HE-regression estimate was not available), indicative of a
minimal contribution to direct heritability from rare variants, though again with wide confidence
intervals. As was observed for other traits, estimates from kinship models and prior twin analyses
ranged from 0.42-0.49, further evidence of substantial inflation in twin and family models due to
confounding from the shared environment. Finally, genetic ancestry components were more
strongly associated with EA than any other trait, underscoring a substantial effect of population
stratification.

Components of h2g for Educational Attainment estimated in (Young et al. 2018)
IBD: Identity-By-Descent segments estimating association with most genetically transmitted material; SNP:
estimates from common (>1% frequency) variants only. HE: Hasemane-Elston regression / least squares
estimator; REML: maximum likelihood estimator; AM: adjustment for assortative mating. Kinship/twin

models estimate total trait transmission and are confounded by any shared environment.

IBD RDR
direct h2g

(HE)

IBD RDR
direct h2g
(HE) [AM]

IBD RDR
direct h2g

(REML)

SNP RDR
common

direct h2g
(REML)

SNP
common pop
h2g (REML)

Kinship
(RDR sample)

Kinship
(random)

Previous
Kinship

Previous
Twin [AM]

0.09
(0.14)

0.09 0.17
(0.09)

0.17
(0.04)

0.30
(0.04)

0.52
(0.04)

0.46
(0.02)

0.42
(0.04)

0.49
(0.08)

The large difference in estimates from HE-regression versus REML highlights the potential
influence of assortative mating on the RDR estimator, which are known to be differentially biased
by AM (see [3.3]). Indeed, HE-regression versus REML estimates were nearly identical (R2=0.98)
for all traits except for EA and height, the two phenotypes with the largest evidence of assortative
mating from mate pair correlations:
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Comparison of HE-regression versus REML estimates from RDR analysis of 14 traits.
Estimates for each evaluated trait shown as a single point with REML on x-axis and HE-regression on the
y-axis (referred to as Least Squares / Lsq). Height and EA highlighted in red, linear fit to traits excluding

height and EA shown with dotted line (R2=0.98).

We thus consider corrections to the HE-regression estimate under a variety assortative mating
scenarios. Recall that the goal of these corrections is to recover the true association between
genetic variation and the trait in the current population, under the assumption that assortative
mating has reached equilibrium. In other words, the squared partial correlation between the trait
and the genetic value after conditioning on the genetic values in the parents (if we had perfect
estimates of genetic values or perfect PGIs).

In the scenario where assortative mating occurs on the observed EA phenotype with a mate pair
correlation is 0.42-0.48, the direct h2g remains ~0.09. The fact that the estimate does not change
may be surprising given the lengthy prior discussion of AM, but AM biases are minor when either
AM or h2g is small (and thus the excess genetic correlation between mates, the cause of AM
bias, is also weak). In this case, the genetic correlation between mates is expected to be
0.09*0.48=0.04 and introduce a negligible bias.

Expected assortative mating correction for direct h2g.
Corrected, equilibrium heritability (y-axis) as a function of parental genetic correlation (x-axis) for an

estimated within-family direct h2 of 0.09 (green) and 0.17 (orange).



It is, of course, possible that AM is acting on a latent, more heritable, phenotype and the true
genetic correlation between mates is higher than what would be expected from the observed
phenotypic correlation (see [3.3] and [5.14] below). Under an extreme latent mating scenario,
where assortative mating occurs on an 80% heritable trait with phenotypic correlation of 0.48 the
corrected estimate would be 0.15. Alternatively, using a recently proposed method to adjust for
assortative mating based on observed population PGI correlations (Young 2023), the estimate
that pops out is 0.16 (this correction is imperfect as PGI correlations were derived from
population-level effects, not direct effects, and used only common variants, not all variants). Note,
all above corrections are made to the HE-regression estimate rather than the REML estimate
because only the former follows analytical expectations for bias. In short, under either
phenotypic or latent assortative mating, the corrected (nearly) total direct h2g estimate for EA
is 0.09-0.16.

RDR total direct heritability estimates of Educational Attainment with corrections for assortative
mating.

Using a raw RDR estimate of 0.09 each row reports the results from different AM scenarios for: the mate
correlation, corresponding genetic mate correlation, corrected estimate. Row 3 assumes assortment on an
underlying latent phenotype with 80% heritability. Row 4 uses the method of (Young 2023) based on total

PGI correlations. Adjustments for a twin estimate of 0.43 also shown for comparison.

Assortment type

Mate
correlation

(r)

Mate genetic
correlation

(rg)

RDR h2
Adjusted for

AM

Twin h2
Adjusted for

AM

1. None 0.00 - 0.09 0.43

2. Phenotypic (Kemper et al. 2021) 0.42 0.04 0.09 0.56
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Assortment type

Mate
correlation

(r)

Mate genetic
correlation

(rg)

RDR h2
Adjusted for

AM

Twin h2
Adjusted for

AM

3. Phenotypic UKB (Horwitz et al. 2023) 0.48 0.05 0.09 0.61

4. 0.48 assortment on 80% heritable latent trait - 0.38 0.15 0.69

5. PGI-based correction (Young 2023) - 0.16 1.86

5.3 | Common direct heritability and PGIs

In addition to the RDR approach described above, direct h2g for common variants can be
estimated by conducting within-family GWAS (see [3.2]) followed by conventional summary-based
heritability analyses (e.g. LDSC regression, which is approximately equivalent to HE-regression).
Across ~129k individuals, (Howe, Nivard, et al. 2022) estimated direct common SNP h2g of 0.04
(s.e. 0.01) for EA. Unlike variance partitioning / RDR, within-family effect size estimates are not
biased by assortative mating and thus no correction is needed (Lee et al. 2018; Brumpton et al.
2020; Davies et al. 2019).

What does this direct h2g mean practically? For a trait with 40% prevalence (e.g. college
attainment) under a completely random environment, an h2g of 0.04 means that having a sibling
graduate college increases one's probability to graduate college to 41%; whereas having both
parents graduate college increases one’s probability to graduate college to 42% (see [1.1]). In
short, the direct genetic contribution of common variants is miniscule.

The direct h2g of 0.04 was contrasted with a population h2g estimate of 0.13 (s.e. 0.01;
p= 5.3 × 10-26 for difference): a reduction of 76% and one of the largest seen for any trait. Recall that
population h2g will include the effect of environment that is non-causally correlated with
genotype, particularly for traits undergoing cultural transmission (see [3.4]). In other words, 76%
of the apparent population h2g of EA is non-causal environmental confounding. The direct
h2g estimate was also remarkably low compared to the other phenotypes, 4th lowest across the
25 traits tested (with the other three traits all behavioral and vaguely defined: physical activity,
age at first birth, and number of children) and far lower than the average common direct h2g of
0.11.

Population and direct common h2g estimates across 25 traits.
Population-level (environmentally confounded) h2g shown in light gray, direct (within-sibship) h2g shown in
dark gray. Error bars indicate confidence intervals. EA highlighted in blue. Traits with negative estimates

not shown. Data from (Howe, Nivard, et al. 2022).
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This cohort was much larger and more representative than the (Young et al. 2018) analysis and
exhibited substantially lower population h2g, so the two estimates are not directly comparable.
However, in both analyses the population-level h2g was 2-3x inflated relative to the true direct
h2g – possibly the largest gene-environment confounding observed for any common trait.

Direct vs. indirect common SNP PGIs

An alternative approach to quantifying direct and indirect genetic effects, proposed by (Kong et
al. 2018), is to predict PGIs into parents and children in families and then jointly evaluate their
association with the trait of the child. This enables the use of large population GWAS to build
highly predictive PGIs at the cost of interpretability, as the estimated parameter no longer
corresponds to the total variance explained and is highly dependent on how the specific PGI was
trained (more discussion in [3.2]). Unlike h2g estimators, however, direct effects (but not indirect
effects) estimated from within-family PGIs are immune to assortative mating bias (see [3.3]), and
thus enable triangulation of the estimated direct h2g with different methods.

Within-family PGIs for EA have now been analyzed across multiple cohorts, with representative
studies summarized in the table below. The direct variance explained ranged from 2%-5%, with
the most recent study using the best PGI to explain 3.2% of the variance in EA directly (Okbay et
al. 2022). These independent PGI-based analyses are consistent with the within-family GWAS
estimates of ~4% direct h2g. The fraction of total PGI variance explained by direct effects ranged
from 50-60% in earlier studies (Kong et al. 2018; H. Liu 2018) to 26-30% in more recent studies
(Young et al. 2022; Okbay et al. 2022), potentially indicating that larger GWAS are picking up
more indirect associations (though cohort-specific effects and assortative mating / stratification
bias in the indirect effect estimate are difficult to disentangle here).

Recent studies of direct/indirect effect partitioning using within-family PGIs.
For each analysis, the standardized PGI effect and R2 is reported. As each study used slightly different PGI
analyses, the fraction of population variance that is direct – which can be compared across studies – is

also reported.
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Study EA PGI Effect R2

% of pop
variance
that is
direct

(Kong et al. 2018) Transmitted 0.22 5.0% 50%

(Kong et al. 2018) Untransmitted 0.07 2.5%

(Kong et al. 2018) Untransmitted, adjusted for parental EA 0.03 0.6%

(H. Liu 2018) Direct PGI 0.16 2.7% 63%

(H. Liu 2018) Population PGI 0.20 4.3%

(Willoughby et al. 2021) Direct PGI 0.19 3.5% 38%

(Willoughby et al. 2021) Population PGI 0.30 9.3%

(Young et al. 2022) Direct effect 0.14 2.0% 26%

(Young et al. 2022) Untransmitted effect 0.14 2.0%

(Okbay et al. 2022) Direct PGI 0.18 3.2% 31%

(Okbay et al. 2022) Population PGI (family data) 0.33 10.9%

Incomplete correlation of direct/indirect effects and evidence of
stratification

In addition to partitioning the direct/indirect variance of EA, it is of interest to understand the
correlation of the direct and population/indirect effect sizes. If direct and population effects are
highly correlated, then population-level PGIs used in within-family analyses (as above) can fully
capture direct effects and merely misestimate the overall PGI magnitude. Whereas if direct and
population effects are only partially correlated, then the genetic variation causally driving EA
in contemporary participants is different from the genetic variation correlated with EA in the
population (GWAS/PGI), either because different processes are at play for cultural transmission
(for example, the mechanisms of mate choice and educational advancement were different in
prior generations) or because the population-level estimates are confounded by population
stratification (see [2.9, 3.4]).

The genetic correlation between direct and population effects was estimated in (Young et al.
2022) at 0.74 (s.e. = 0.09), significantly lower than 1 and indicative of confounding in the
population-level estimates. The genetic correlation between direct and indirect effects (note,
population effects are a weighted average of direct and indirect effects) was estimated at 0.34
(s.e. = 0.22), suggestive of substantially different mechanisms but with very high uncertainty. What
could explain this deviation? In simulations with realistic parameters, population structure alone
produced a correlation of 0.92, whereas assortative mating and cultural transmission produced a
correlation of 0.88 – less than 1 but still higher than what was observed in real data. These
simulations were intentionally simplistic, but demonstrated that some combination of
stratification and AM and VCT was present in the population level EA statistics.
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The presence of population stratification was specifically confirmed with additional analyses:
adjusting for geographic coordinates or principal components computed from recent relatedness
(see [2.5]) increased the direct-population correlation up to ~0.79, and a population analysis with
more sophisticated control for population structure (BOLT-LMM) produced direct-population
correlation of 0.94. Thus, population-based PGI estimates are inflated by some amount of
recent stratification and this will likely differ depending on how population stratification was
accounted for in each study as well as in the target population.

5.4 | Common population heritability (with environmental
confounding)

In the previous sections the direct h2g of 0.04 was contrasted with an (environmentally
confounded) population h2g of 0.13 estimated in the sibling-oriented study of (Howe, Nivard, et al.
2022). Is the population h2g estimate representative? Yes, the largest meta-analysis of EA
heritability (Lee et al. 2018) estimated an average common h2g of 0.15 across >1 million
individuals. This is slightly higher than the 0.13 observed in (Howe, Nivard, et al. 2022) and lower
than some of the initial estimates from smaller studies (e.g. 0.22 in (Rietveld et al. 2013)) but
broadly consistent with estimates from individual large cohorts (see table below). Bias due to
assortative mating (see [3.3]) was specifically quantified in (Border, O’Rourke, et al. 2022),
producing an AM-corrected h2g of 0.15-0.16 (down from 0.16-0.17) using two approaches. Thus,
the gap between the direct h2g and the population h2g cannot be explained by assortative
mating corrections alone and can be attributed to cultural transmission or population
stratification.

Common h2g estimates of Educational Attainment across multiple studies and methods.

Study / Method # Samples Estimate

(Rietveld et al. 2013) multi-cohort 126,559 0.22

(Howe, Nivard, et al. 2022) multi-cohort 128,777 0.13

(Lee et al. 2018) multi-cohort 1,060,743 0.15

(Lee et al. 2018) UK Biobank (mostly UK) 442,183 0.14

(Lee et al. 2018) 23andme cohort (mostly US) 365,538 0.14

(Lee et al. 2018) EGCUT (Estonia) 36,631 0.16

(Border, O’Rourke, et al. 2022) UK Biobank HE-reg 332,198 0.17

(Border, O’Rourke, et al. 2022) UK Biobank HE-reg (AM corrected) 332,198 0.16

(Border, O’Rourke, et al. 2022) UK Biobank HE-reg (AM_g corrected) 332,198 0.12

(Border, O’Rourke, et al. 2022) UK Biobank REML 332,198 0.16

(Border, O’Rourke, et al. 2022) UK Biobank REML (AM corrected) 332,198 0.15
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Study / Method # Samples Estimate

(van Alten et al. 2022) UK Biobank (all) 392,433 0.15

(van Alten et al. 2022) UK Biobank (participation weighted) 160,707 0.18

Dominance

Dominance variation, where the effect of multiple copies of an allele deviates from additivity, has
a negligible role for common variants across nearly all common traits (see [4.1]) and we should
expect similar for EA. Indeed, (Okbay et al. 2022) conducted a dominance-GWAS of EA in 2.5M
individuals and estimated a total common dominance h2g of 0.00015, which was not significantly
different from zero. The GWAS did not identify a single genome-wide significant association, and
concluded that “we can rule out the existence of any common SNPs whose dominance effects
explain more than a negligible fraction of the variance in EA”.

Participation bias

GWAS participants have to opt in to the study by definition, and this creates a potential bias if the
participation is not random. When participation is correlated with a trait being tested, this can (a)
restrict the variance in the study relative to the full population and deflate heritability or estimated
relationships across traits (van Alten et al. 2022); (b) induce a collider bias by conditioning on a
variable that is influenced by the outcome and lead to distorted estimates of the genetic effects
(Young et al. 2022). In the UK Biobank (and likely other biobanks as well) multiple studies have
shown that participation is correlated with EA and related traits. (Schoeler et al. 2023) and (van
Alten et al. 2022) used representative census data to infer the participation bias between the UK
Biobank population and the general population. (van Alten et al. 2022) then re-estimated the h2g
of EA after re-weighting the sample to match the population, leading to a slight increase in the
population h2g from 0.15 to 0.18. (Schoeler et al. 2023) conducted a GWAS on participation itself
and estimated the genetic correlation between the “participation GWAS” and other traits,
demonstrating that EA had the highest positive genetic correlation of any trait tested (including
income and IQ). Lastly, (Benonisdottir and Kong 2023) used a clever sibling design to identify
excess shared genetic variation in participating siblings and derive a participation phenotype.
This approach was notably different in that it did not require inferring the relationship between
the biobank sample and the general population. The participation phenotype was significantly
heritable (population h2g = 0.13, nearly as high as EA itself) and had a substantial genetic
correlation with EA of 0.37 (s.e. 0.10). Thus, three different approaches demonstrated that EA is
significantly genetically correlated with biobank participation and this can influence genetic
correlations between EA and other phenotypes in complex ways.

Genetic correlation between participation in the UK Biobank and other traits.
Figure from (Schoeler et al. 2023).

https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/grLBc
https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/9cbuA
https://paperpile.com/c/UwWSe8/E44b2
https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/MT0Ob
https://paperpile.com/c/UwWSe8/E44b2
https://paperpile.com/c/UwWSe8/TAUdv
https://paperpile.com/c/UwWSe8/E44b2


Cohort heterogeneity

Although (Lee et al. 2018) reported a weighted mean estimate of 0.15, there was significant
evidence of inter-cohort heterogeneity. First, multiple sub-studies exhibited highly significantly
negative estimates of common h2g. While random fluctuations and small sample sizes can lead
h2g estimates to be negative purely due to statistical chance, highly significant negative
estimates are indicators of either systematic data/processing issues or unusually complex
genotype-phenotype relationships (Steinsaltz, Dahl, and Wachter 2020). Cohorts with negative
h2g accounted for only 6% of the total sample size and so are more of a cohort-specific curiosity
than a global bias. Second, and more systematic, was the low mean genetic correlation observed
across cohorts, estimated at 0.72 (s.e. 0.14, p = 0.03 for difference from 1.00). A genetic correlation
below 1 is indicative of systematic differences in the effect sizes between pairs of cohorts. For
context, height and BMI exhibited cross-cohort genetic correlations of 0.96 and 0.95 respectively
(Loic Yengo et al. 2018); depression, a more diffuse psychiatric phenotype, exhibited a
cross-cohort genetic correlation of 0.86 across three different cohorts (Howard et al. 2019). In
short, and unsurprising given the phenotypic definition, both the h2g and the individual genetic
effects differ substantially across studies.

Sub-cohort heterogeneity in h2g and genetic correlation.
(left) cohort-specific h2g estimates for all cohorts with standard error < 0.1, p-values are shown for

significant negative estimates after Bonferroni correction. (right) histogram of pairwise cross-cohort genetic
correlations for estimates with standard error <0.1. For reference, the estimate for depression and

height/BMI from other studies is shown in blue.
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The high degree of cohort heterogeneity complicates the interpretation of any individual PGI
analysis. Differences in PGI prediction across different populations could reflect true underlying
genetic differences, or underrepresentation of the given cohort in the PGI training set, or – for the
minority of cohorts with negative heritability – completely nonsensical estimates presumably due
to data processing.

5.5 | Measurable environmental confounding in population PGIs

Within-family environmental conditioning

Differences between (AM corrected) within-family h2g and population-scale h2g are indicators of
potential environmental confounding through cultural transmission, which can be further localized
by adjusting for specific measured environmental variables (see [3.2]). Recall that accounting for
random environmental variation should increase h2g (by decreasing the environmental value for
the trait), whereas accounting for passive gene-environment confounding should decrease h2g.
Moreover, when partitioning direct and indirect effects, environmental factors that decrease the
indirect effect lend evidence to cultural transmission along that specific factor (the most logical
factor being EA itself in parents).

Scenarios for within-family conditional analyses.
[Gp]: Parental genotype; [G]: Participant/child genotype; [EA]: Educational Attainment in child; [EAp]:

Educational Attainment in parent (potentially confounding); [gray rounded box] indicates conditioning. (a)
Population-level estimate where direct G-EA relationship is confounded by indirect correlations from

parents. Note Gp-EAp relationship may not be causal in the presence of AM (thus shown as a dashed line
without arrows). (b) Within-family estimate where direct G-EA relationship is properly estimated and

indirect association captures all other factors correlated with parental genotype. (c) Within-family estimate
with additional conditioning on parental phenotype, indirect association will be attenuated if EAp mediates
the Gp-EA correlation (i.e. cultural transmission directly through EA). The direct estimate may increase if

EAp also has a non-genetic influence on EA (i.e. purely environmental variance). (d) Same estimation as (c)
but G also influences EAp (evocative rGE) which can bias the conditioned effect (likely down).



Such a conditional analysis was, in fact, conducted in the original direct/indirect analysis of (Kong
et al. 2018), where adjusting for parental education attenuated the r2 of the non-transmitted (i.e.
indirect) PGI from 2.5% to 0.6%. In other words, educational attainment in the parents explained
the vast majority of the apparent indirect genetic association with educational attainment in the
children. The remaining 0.6% was still significantly non-zero, suggesting either assortative mating
/ stratification or other environmental factors correlated with the EA PGI may still have an effect
on the child phenotype.

Several studies have now replicated this within-family conditional analysis for EA. (Willoughby et
al. 2021) analyzed a sample of 2,517 genotyped twins and parents with multiple measured traits.
In a joint model of parent and offspring EA PGIs, the PGI in offspring explained 2.6% of the
variance in child EA and the PGI in the parent explained 4.0% of the variance in child EA
(consistent with other PGI analyses in [5.1]). Adding either parental EA or parental SES as a factor
completely attenuated the parental PGI effect to no longer be significant. Interestingly, adding
parental IQ test performance as a covariate in the model reduced the parental PGI effect and
variance explained to 1.2% (p=0.004), suggesting that EA itself rather than a latent cognitive
feature like IQ was the underlying mediating factor for cultural transmission. Adding parental
factors also slightly increased the variance explained by the direct/offspring PGI, consistent with
parental EA additionally having a non-genetic environmental influence on child EA (which, when
accounted for, refines the direct genetic association).

Variance explained in offspring EA after adjusting for parental features.
Partial r2 between EA and the offspring PGI and parent PGI in a joint model are reported. Each subsequent
row reports adjustment for parental IQ, EA, or SES traits (not PGIs). NS: not statistically significant. Data

from (Willoughby et al. 2021).

Feature Direct/
Offspring PGI

Parent PGI

PGI only 2.6% 4.0%

w/ Parental IQ 2.9% 1.2%

w/ Parental EA 3.6% 0.2% [NS]

w/ Parental SES 3.6% 0.2% [NS]

Similar findings were observed in an analysis of two US cohorts, the Framingham Heart Study and
the Health and Retirement Study, by (H. Liu 2018). First, parental EA explained far more variance
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in child EA than either parent or child PGIs, underscoring the important cultural role of
parental environment in shaping EA in children. Second, the variance explained by the parental
EA PGI decreased substantially after adjusting for parental EA in both cohorts, by 2.6x and 4x
respectively. Third, the variance explained by the child EA PGI decreased when adjusting for
parental EA and decreased further when adjusting for parental EA and parental EA PGIs,
indicating that some residual indirect genetic association was present.

Variance explained in child EA from genetic and non-genetic factors.
Results from three cohorts are shown (FHS, HRS wave 1-2, and HRS wave 2-3). Data from (H. Liu 2018).

Feature FHS HRS 1-2 HRS 2-3

Parent EA 12.3% 9.6% 18.5%

Parent EA PGI 2.6% - 3.2%

Parent EA PGI (w/ parental EA) 1.0% - 0.8%

Child EA PGI 4.0% 4.4% -

Child EA PGI (w/ parental EA PGI) 2.7% - -

Child EA PGI (w/ parental EA) 2.3% 3.2% -

Child EA PGI (w/ parental EA + parental EA PGI) 1.7% - -

Population-level environmental conditioning

While less accurate, potential environmental confounding can also be evaluated in population
studies through conditional analysis, when those environments are measured. If adjusting for
primordial factors reduces the predictive effect, then those factors (or something correlated with
them) likely mediate the gene-trait correlation (see [3.2]).

A hybrid within-family/population approach was taken in (Selzam et al. 2019) using a cohort of
~2,400 dizygotic twins from England and Wales aged 12-21. The General Certificate of Secondary
Education (GCSE) exam grades were used as the relevant EA outcome, which is a hybrid of
educational attainment (GCSE is one of the “steps” in EA GWAS, see [5.1]) and “achievement” (test
performance). Consistent with prior results, the within-family PGI explained 4.4% of the variance in
achievement and within versus between family differences were “almost exclusively” observed
for EA and IQ related phenotypes. The population PGI explained 17% of the variance in
achievement, which was attenuated to 5.9% after adjusting for a parental socioeconomic status
composite computed from parental education, occupation, and age at first birth, with most of the
attenuation coming from parental EA itself. Thus adjusting for parental environment factors
explained the majority of the gap between population and within-family genetic effects.

Variance in educational achievement / IQ test explained by EA PGI.
The variance explained in the General Certificate of Secondary Education (GCSE) test performance (left)
and IQ test results (right) shown for a PGI evaluated by DZ twin difference (green), between families (i.e. in
the population) after adjusting for environmental factors (purple), and between families without adjustment
(gray). SES was estimated as a composite of parental education, occupation, and age at first birth. Data

from (Selzam et al. 2019).
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Using a fully population-based design, (Lee et al. 2018) similarly quantified the change in PGI
prediction accuracy after adjusting for basic familial environmental factors: starting from a
population-level r2 of 11.7%, adjusting for parental EA led to a substantial reduction in PGI
accuracy (to ~6%), and adjusting for all available factors (marital status, household income,
parental EA) further reduced the PGI accuracy to 4.6%. While not directly comparable, this
conditioned estimate was again roughly consistent with the independently estimated direct h2g
of 4%.

Population PGI accuracy for Educational Attainment after adjusting for environmental factors.
Leftmost bar is the baseline PGI accuracy alone, each subsequent bar adds a covariate for a measured
environment. Note: marital status and household income may be downstream of genetic effects. Figure

from (Lee et al. 2018).

Finally, (Abdellaoui, Dolan, et al. 2022) estimated conditional common SNP h2g after adjusting for
geographic covariates in the UK Biobank. Whereas non-behavioral phenotypes had marginal
changes to their h2g after adjusting for birthplace or place of origin (see [4.3)), EA was one of the
traits most strongly affected by geographic mediation. Starting from a baseline of 0.14, h2g was
reduced by 15% (to 0.12) after including birth address, and by 32% (down to 0.09) after including
both birth and current address. Yet again a significant portion of population heritability is actually
mediated by very crude environmental factors.
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Heritability of EA before/after conditioning on birth address, current address, or both.
Raw estimate corresponds to no adjustment. Each estimate is followed by the % of heritability relative to
the raw estimate. Results shown for the MSOA analysis, which produced larger deviations. Data from

(Abdellaoui, Dolan, et al. 2022).

Raw Birth Address Current Address Both

h2 h2 % h2 % h2 %

0.14 0.12 85% 0.10 74% 0.09 68%

Summary

In sum, multiple studies and study designs confirm that the vast majority of indirect EA h2g
can be mediated by parental EA itself or composites of parental EA and socioeconomic status.
In some studies, the indirect PGI association was completely attenuated (Willoughby et al. 2021),
consistent with simple cultural transmission of EA itself. In other studies, ~25% of the indirect
association remained, indicative of a small amount of “latent” cultural transmission on other traits
not captured by parental EA (for example, socioeconomic status), or assortative mating /
stratification biasing the indirect PGIs. Finally, a recent review and meta-analysis across many
different within-family studies found that >90% of the variance explained by indirect effects was
attenuated after adjusting for parental EA or SES (B. Wang et al. 2021).

Similar patterns were observed in population-level analyses, where accounting for parental
variables attenuated the variance explained by the population PGI by 60-65%, with EA/SES
composites generally leading to more attenuation than EA alone. In several instances the
adjusted population PGI accuracy approached the expected direct effect h2g. A practical
implication of these findings is that proper adjustment for the parental environment may enable
more accurate identification of direct effects from population-level data (without families) by
blocking much of the environmental confounding (this was, in fact, hypothesized but not done in
(Lee et al. 2018)).

5.6 | Interpreting h2g parameters under a cultural transmission
model

While both (Howe, Nivard, et al. 2022; Young et al. 2018) demonstrated a clear and substantial
gap between the population-level and direct h2g estimate, the mechanism for this gap has not
been quantified. Such mechanistic parameters can be estimated under a model of assortative
mating and cultural transmission on EA itself, consistent with some of the observations in [5.5].
Knowing that the phenotypic assortment on EA is ~0.48 and the estimated direct and population
h2g (0.04 and 0.13 respectively), one can then identify corresponding direct h2g and cultural
transmission values that would produce the observed estimates (including potential bias due to
RDR/HE-regression estimation).
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The figure below shows the results of such a parameter search using HE-regression RDR to
estimate direct h2g (see [3.2]) and HE-regression to estimate population h2g (see [2.2]) in
simulations (unpublished). The single best fit true direct h2g was 0.04, with a range of 0.01-0.08
(consistent with the above assortative mating adjustments). The best fit cultural transmission
(defined as the variance in the child trait explained by the mean parent trait) was 0.23, with
90% of parameters >0.10 (but a very wide range).

Genetic and cultural parameters fitting the observed common h2g.
Histogram of genetic and cultural parameters that yield estimates within two standard errors of (Howe,
Nivard, et al. 2022): 0.04 direct and 0.13 total h2g. Both are reported in terms of variance explained.

Conducting a similar exercise is more challenging for the (Young et al. 2018) RDR estimates
because of the very wide standard errors. For completeness, simply taking the point estimates of
direct h2g of 0.09 and total h2g of 0.30, the single best fit parameter model was 0.10 direct h2g
and 0.20 cultural transmission. Both results qualitatively support a small fraction of trait variance
(4-10%) explained by direct genetic effects, a larger fraction of variance (20-24%) explained by
cultural transmission that is correlated with EA genetic values, and a much larger fraction of
variance explained by environmental factors or through cultural transmission that is uncorrelated
with EA genetic values.

Matching cultural parameters to two empirical estimates of total and direct h2g.
Using the population/total and direct (i.e. within-family) estimates of h2g for Educational Attainment from
RDR (Young et al. 2018) and sib-GWAS (Howe, Nivard, et al. 2022) and a mate correlation of 0.48 (Horwitz

et al. 2023) simulations with VCT were fit to identify parameters that produced matching variance
partitions. The empirical estimates from data are shown in black dots, the simulation-based estimates are
shown in purple bars, the corresponding VCT (% of child trait variance that is explained by mean parental

trait) and true direct equilibrium h2g are shown in green bars.
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It is difficult to compare these estimates with epidemiological results due to differences in
ascertainment and phenotype normalization across studies, the wide credible intervals on the
parameter fits, and the fact that the cultural transmission model is very simplistic. However, the
estimated cultural variances are at least facially consistent with the average correlation (i.e.
square root of the variance) of 0.43 between parental and child schooling across the globe, and
0.46 in the USA, which has held steady for several decades (Hertz et al. 2008). Studies of genetic
cohorts have also reported broadly similar parent-child correlations for EA of 0.35-0.43 (H. Liu
2018).

In short, under a phenotypic cultural transmission model, direct genetic variants account for
less of the variance in EA than cultural transmission and much less than environmental
variance – consistent with sociological observations.

5.7 | Gene-Environment interactions / Scarr-Rowe

Hypothesis

If the majority of population-scale EA h2g is confounded by cultural transmission from parents,
one could expect substantially different h2g estimates in different environments (i.e. GxE
interactions, see [1.2]) due to differences in cultural patterns. If, for example, the influence of
parental education on offspring EA is less important in high resource environments and individual
aptitudes (which are primarily non-genetic, see [4.1]) are more important, then indirect effect
correlations will be weakened and population h2g will decrease with higher SES. In the movie
Parasite, the patriarch of a struggling family observes that “rich people … have no creases on
them”, to which his wife replies: “It all gets ironed out. Money is an iron. Those creases all get
smoothed out by money”. In this example, wealth/resources “smooth out” the advantages of
familial/dynastic environments and decrease the environmentally confounded population h2g.
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The smoothing example inverts a classic GxE hypothesis from twin studies known as Scarr-Rowe
(Scarr-Salapatek 1971; Rowe, Jacobson, and Van den Oord 1999), which proposes that natural
aptitudes become more relevant than environmental effects in high resource settings (or,
alternatively, that high resource environments enable individuals to actualize more of their natural
potential (Bronfenbrenner and Ceci 1994)). The fundamental difference is that the Scarr-Rowe
hypothesis presumes that natural aptitudes are highly and directly heritable, and expects
heritability to increase with SES as environmental contributions decrease. Whereas the
smoothing hypothesis presumes that population h2g is largely driven by environmental
confounding. Interestingly, if population h2g and twin/family h2 methods are biased in different
ways but observe consistent changes in shared environment, the two study designs could yield
estimates consistent with both hypotheses. It’s also worth noting that quantifying the
generalizability of the Scarr-Rowe effect in family/twin studies remains an active area of study
(Turkheimer and Horn 2014) and it is simply one GxSES hypothesis out of many.

Schematic of two GxSES heritability hypotheses.
(left) A hypothetical “smoothing” model where parental EA has a large influence on the child trait in low
resource environments but not high resource environments, leading to a higher estimate of population
h2g in the former due to environmental confounding. (right) results from twin-based analysis of (Rowe,

Jacobson, and Van den Oord 1999) showing substantial changes in estimates of shared environment, but
with the majority of trait variance assigned to direct genetic effects.

Beyond understanding current mechanisms, reconciling these models is important for forecasting
the expected change in h2g as environments change over time. The Scarr-Rowe effect predicts
that heritability will increase as a society becomes more resource rich (a presumption geneticists
very much want to believe, if only out of career self-preservation). The smoothing hypothesis
predicts that population h2g will decrease as society becomes more resource rich, approaching
the (much smaller) direct h2g estimate.

Evidence of interactions between genetics and socioeconomic
environment

Two recent studies in the UK Biobank observed significant decreases in population h2g with
resource-increasing environments (Mostafavi et al. 2020; Rask-Andersen et al. 2021), consistent
with the smoothing hypothesis. In both analyses, resources/SES were quantified using the
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Townsend Deprivation Index (a composite of unemployment, car ownership, home ownership,
and household size) and h2g estimated in different TDI strata. (Mostafavi et al. 2020) used years
of education and observed both population h2g and PGI r2 to be significantly higher for the
highest TDI (lowest SES) quartile (h2g = ~21%) compared to the lowest TDI (highest SES) quartile
(h2g = ~11%). (Rask-Andersen et al. 2021) observed the same with college attainment (in addition
to years of education): in the highest TDI quintile (26% of participants graduating college) the
population h2g of EA was 26%, whereas in the lowest TDI quintile (36% of participants graduating
college) the population h2g of EA was 13%. In a population PGI analysis, a highly significant GxE
interaction was observed between the population EA PGI and TDI (p = 1x10-10). Notably, the
genetic correlation across groups was not significantly different from 1.0, indicating the same
pattern of genetic variation but differences in overall magnitude.

(Mostafavi et al. 2020) hypothesized that the GxE effect could potentially be explained by
changes in the environment alone: if environmental variance is lower in higher TDI environments
but genetic variance remains the same, then h2g (a ratio of the two) would increase. Strikingly,
the opposite relationship was observed: phenotypic variance actually increased slightly in the
high TDI environments, implying that either genetic variance alone or both genetic variance and
environmental variance had increased. The authors proposed an “amplification” model where
genetic effect sizes (and thus overall genetic variance) are magnified in high TDI environments; a
model that had earlier been considered for IQ (Tucker-Drob, Briley, and Harden 2013). As noted
by (Rask-Andersen et al. 2021), this is the exact opposite to what would be expected from the
Scarr-Rowe effect. Notably, these findings forecast that h2g and r2 will decrease as societies
become more resource rich.

Population h2g and prediction accuracy of EA by Townsend Deprivation Index in the UK Biobank.
(a) Population h2g as a function of TDI quintiles for EA (green) and EduYears (red). Figure from

(Rask-Andersen et al. 2021). (b) PGI prediction accuracy versus population h2g of EduYears for quartiles of
TDI (Q1 = highest TDI/lowest SES, Q4 = lowest TDI). Figure from (Mostafavi et al. 2020).
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Recent work by (Ghirardi and Bernardi 2023) continued to explore the GxSES interaction for
individual EA “steps” in multiple longitudinal cohorts. Notably, while there was no significant
interaction between the EA PGI and SES for overall years of education, there were highly
significant – and different – interactions for individual EA milestones. In the largest of the three
cohorts, for example, the effect of the PGI is significantly weaker for high-SES families, with
individuals in the low/high PGI groups achieving ~90%/~100% graduation compared to ~70%
/90% (respectively) for the low-SES families. In contrast, the same interaction is negative when
looking at graduate school degrees: for high-SES families, individuals in low/high PGI groups
achieve ~5%/~30% graduate degree attainment, compared to ~5%/~10% for low-SES families.
Similar effects were seen for other college degree stages and across the three cohorts
evaluated.

Variation in GxSES interaction across educational attainment steps.
From left to right: interaction between EA PGI (x-axis) and high-SES (green) versus low-SES (red) for each
EA step. For early steps the population PGI effect is lower with high-SES. Whereas for later steps the

population PGI effect is higher with high-SES. Figure from (Ghirardi and Bernardi 2023).

To explain these complex results, the authors propose a “compensatory advantage model
(CAM)”. Under the CAM, individuals in high resource environments get more second chances to
succeed, and are thus able to better overcome initial failures. For example, students who initially
struggle in school can be supplemented with private tutoring to maintain their progress. This is
facially consistent with the observation that phenotypic variance in low TDI (high resource)
environments is lower because high resource students are less likely to suffer dramatic losses in
educational attainment. On the other hand, for more selective EA steps like college or graduate
school, the authors argue that high-SES families appear to be maximizing slight genetic
advantages into more substantial attainment gains. The authors generally present these results in
terms of “genetic endowments”, as is typical in the field. But recalling that the PGI is actually
largely capturing familial/dynastic educational attainment (or stratification) and not direct genetic
effects, these findings instead suggest that family connections matter less for high-SES
individuals in high school but provide an “extra boost” for high-SES individuals to attain a college
and graduate degree. Interestingly, a recent large-scale (non-genetic) analysis of selective
universities in the US found that high-income families had a significant advantage in admissions
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to Ivy League colleges (compared to applicants with comparable test scores), and that Ivy status
then had a strong causal effect on admission into an elite graduate school (Chetty, Deming, and
Friedman 2023). In short, the direction of the GxSES interaction may be dependent on the
selectiveness of the educational outcome being considered, consistent with non-genetic
studies of college admissions.

Finally, a recent study in a large Norwegian cohort conducted a within-family EA PGI-school
interaction analysis (Cheesman et al. 2022). The mean within-family PGI explained 5% of the
variance in educational achievement (i.e. grades) but interacted significantly with school
performance. In the highest achieving schools, the PGI explained ~2% of the variance in
individual achievement, whereas in the lowest achieving schools the PGI explained 8% of the
variance in individual achievement. This interaction reflects a highly significant increase in
predictive ability (and, by extension, direct h2g) in lower quality/achievement schools.
Interestingly, including school-level SES factors as covariates did not significantly alter the
interaction, indicating that these influences are either weak or are implicitly adjusted for by the
within-family design. While these findings present clear evidence of GxE even at the level of
direct genetic effects, they again go in the opposite direction of the Scarr-Rowe model.

Interaction between EA-PGI and school achievement.
2.5% of schools with the weakest (strongest) PGI effect shown in red (blue). The PGI effect is weaker in

schools with higher mean achievement. Figure from (Cheesman et al. 2022).

Taken together, these results demonstrate a highly complex structure of GxSES on both direct
and population-level genetic variation. For overall years of education, population h2g (including
indirect effects) appears to be “amplified” in low-SES settings (or “smoothed” in high-SES
settings). For individual steps in EA, the relationship is initially consistent with high-SES smoothing
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for high-school graduation, followed by high-SES amplification for college and post-graduate
attainment. For direct genetic variation in within-family analyses, higher school quality again has a
“smoothing” effect on the population PGI whereas SES does not matter (or is implicitly factored
out). Since no single study conducted the full battery of population and within-family interaction
analyses across EA steps, these discordant findings have not been fully reconciled.

A word of caution on interpreting statistical interactions

While the above studies showed highly significant evidence of statistical interactions, the
mechanistic interpretation is more complicated (See [1.2] and (Domingue et al. 2020)). First, in the
case of the UK Biobank analyses, the TDI/SES factors were based on the most recent census
data and thus may in part reflect factors that are downstream of the EA PGI rather than predating
it. TDI has a very low molecular h2g (more on this later) so we may expect the genetic
confounding to be low, but it’s not clear how low. Second, for the studies that conducted a formal
interaction test, class imbalance between groups (e.g. a lower baseline of graduates in the
low-SES group) can lead to apparent statistical interactions. (Ghirardi and Bernardi 2023)
conducted extensive sensitivity analyses to evaluate the possibility of artifacts, but these can be
very difficult to rule out. Likewise, (Cheesman et al. 2022) used school grade composites as the
outcome, which can be susceptible to artifacts from data harmonization. Lastly, the PGI analyses
all used population-based scores so the usual caveat applies that it is unclear what these scores
actually measure outside of the training population (see [3.2]).

5.8 | Direct common effects on other phenotypes

Beyond the direct effects of genetics on EA itself, we may be interested in the direct effect of EA
genetics on other traits. For interventions, we may want to know how much changing an EA PGI
in an individual would change a second trait (with the environment and social structure held
constant)? For understanding disease architecture, we may want to know how correlated the
effect-sizes acting on EA in an individual are with the effect sizes acting on the second trait.
These parameters can be approximated in two ways: (1) by evaluating the EA PGI within-families
for its association with another trait: this a parameter that quantifies the predictive accuracy and is
specific to the sample and PGI; (2) by estimating the genetic correlation between the direct
effects on EA and the direct effects on the second trait: this is a population parameter that
quantifies the overall correlation of effect sizes. Note that (1) is an approximation that does not
account for environmental heterogeneity (see [3.4]), and (2) is not a causal estimate at all. Neither
estimate is guaranteed to operate through EA itself, as variants that influence EA can also directly
influence the secondary trait (or act on EA via the secondary trait).

Using the PGI approach, (Okbay et al. 2022) showed that the population PGI effect of EA on other
traits was attenuated at a similar level as the PGI effect on EA itself (i.e. down to ~35% of the
population effect). What remained was generally very little: the EA PGI explained ~3% of the
variance in age at first birth (a correlate of socioeconomic status), ~2.5% of cognitive performance
and vocabulary, 1-2% of income, and <1% for any health-related traits. Using the genetic
correlation approach, separate analyses by (Howe, Nivard, et al. 2022; Wu et al. 2021; Young et
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al. 2022) likewise found that genetic correlations with EA were greatly attenuated when using
direct/within-family effects. Notably, population-level genetic correlations with height, BMI,
smoking, brain volume, and psychological traits were all attenuated to zero. Just as most of the
association of genetics with EA is due to environmental confounding, so is most of the
apparent genetic correlation of EA with other phenotypes. This of course does not mean that
Educational Attainment itself is not causal for health outcomes, but that the small amount of
genetic variation influencing EA is mostly directly uncorrelated with the (typically larger) amount
of genetic variation influencing health traits. Indeed, causal within-family estimates of the effect of
actual educational attainment on other traits generally track with the population-level
correlations, as the environmental confounding on EA and on non-EA traits effectively cancels out
(Howe et al. 2023).

Within-family prediction and genetic correlations between EA and other traits.
(left) Variance explained by EA PGI in within-family analysis. Data from (Okbay et al. 2022). (right) Genetic
correlations with direct (orange) and indirect (blue) effects. Error bars indicate standard error, white dots

indicate significant correlations at 5% FDR. Figure from (Wu et al. 2021).

5.9 | Functional interpretation of common variant h2g

While we have focused on heritability, a primary goal of genetic analyses is to identify individual
biological mechanisms. For EA this is complicated by extensive environmental interactions even
after isolating the variants acting directly in within-family analyses. A variant may have an
apparent direct effect because it impacts skin pigment, which is in turn associated with societal
discrimination, and has nothing to do with neurological/psychological factors EA GWAS intends to
identify (Burt 2022). One proposed solution for disentangling such biologically spurious (but
statistically real) direct effects is to evaluate their local “activity” (D. Morris, Ritchie, and Young
2023): if we could distinguish variants that are active in the brain from those that are active in skin
or muscle we can focus on the “right” mechanisms. Setting aside the implication that
brain-related mechanisms are actually free of discrimination, can this approach work in principle?
Recall that the h2g of common traits is generally non-coding and broadly enriched in regulatory
elements (see [4.1]). While the mapping between variants and their target genes is a field of study
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in and of itself, we can consider “activity” in three ways: (1) the variant is near a gene that’s only
expressed in a specific tissue (Finucane et al. 2018)); (2) the variant is actually associated with the
expression of such a specifically expressed gene (Yao et al. 2020); (3) the variant is in a
regulatory that’s only active/open in a specific tissue. We can then evaluate the extent to which
EA heritability is localized to such regions using “functional partitioning” (see [2.8]), which does
not require knowing the individual associations.

Functional enrichment of EA h2g for gene expression and regulatory activity.
(a) Proportion of h2g in genes expressed in different contexts (Figure from (Lee et al. 2018)). (b)

Expression-mediated h2g (data from (Yao et al. 2020)) by eQTLs in different tissues and tissue groups. (c)
h2g in regulatory elements from different tissues (data from (Finucane et al. 2018)).

The results from these analyses are highlighted in the figure above. In all instances,
genes/elements expressed in the brain are indeed significantly enriched for EA h2g – meaning
they contain more of the trait-correlated variation than would be expected by chance. However,
the majority of h2g still resides in broadly expressed or uncategorized genes/elements simply
because these are far more abundant than genes/elements expressed in the brain. This
pattern was observed for all data types evaluated. (Lee et al. 2018) estimated the proportion of
EA h2g that could be partitioned to specifically expressed genes: broadly expressed genes
accounted for ~2.5% of h2g, whereas genes expressed in the frontal cortex accounted for ~2% of
h2g, naturally the remaining 95% was in genes active in other tissues or not in genes. (Yao et al.
2020) estimated the proportion of EA h2g that was statistically mediated by variants associated
with gene expression in specific tissues. Variants active in a cross-tissue meta-analysis mediated
~6% of the h2g, variants active in the central nervous system (including the brain) mediated ~4%
of the h2g, and variants active in the frontal cortex mediated 3% of the h2g. Again, >90% of the
trait h2g was not mediated by genes that could be easily categorized as active in a specific
tissue/group. Finally, (Finucane et al. 2018) looked at tissue-specific regulatory elements, typically
the most enriched functional class for common traits. Elements expressed in CNS/brain tissues
contained ~30% of the EA h2g, meaning ~70% was localized to other functional regions. While
broadly expressed elements were not considered here, other tissues also explained large
fractions of EA h2g: ~25% in elements active in the cardiovascular system or in
muscle/connective tissues (precisely the problematic scenario where a mechanism may be acting
on EA through some component of appearance or discrimination).

It may seem surprising that the functional partitioning of EA is so non-specific, but this is visually
clear even at the level of individual genes. To further illustrate this, let’s look at the results from a
cognitive function GWAS conducted by (Williams et al. 2023) (we’ll use cognitive function
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because it’s expected to be less diffuse than EA, and because they generated a nice looking
figure). The study identified a number of associated loci and then investigated the tissue-specific
expression of the 90 genes that were nearby. In total, 2/90 genes were exclusively active in the
brain, ~2/90 genes were much more active in the brain but still active in other tissues, and the
remaining ~85/90 genes were either broadly inactive or broadly active. The vast majority of
identified genes were either broadly expressed or not expressed at all.

Gene expression heatmap for 90 genes identified in a cognitive function GWAS.
Each column is a cognitive function GWAS gene and each row is a tissue (from the GTEx consortium). Brain

tissues are the rows highlighted in green; red is high expression and blue is low.

The low specificity of functional enrichment is not unique to EA, in fact it is a major and often
remarked upon challenge for complex trait analysis in general (Boyle, Li, and Pritchard 2017;
Connally et al. 2022; Mostafavi et al. 2023). However, the inability to localize signals to their
active systems is particularly important for EA because of the diffuse nature of environmental
confounding and the importance of understanding the mechanism for intervention. Ultimately
there are no shortcuts, the mechanism for each of the tens of thousands of EA variants will
need to be mapped through the full biological network before we can know whether the
variant acts through relevant or irrelevant mechanisms.

Interpretation in light of cross-trait assortative mating

An important caveat regarding the significant EA h2g enrichment in brain/CNS regions is the
challenges in interpretation due to the confounding forces of cross-trait assortative mating (see
[1.2]). Under cross-trait AM, variants that are causally associated with a spousal trait become
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non-causally associated with the primary trait in offspring. For a trait that exhibits high spousal
correlation with other heritable traits, this would induce excess population h2g enrichment in
non-causal regions. Indeed, EA is just such a trait, with (Border, Athanasiadis, et al. 2022) recently
demonstrating widespread and substantial cross-mate correlation with IQ scores, height, and
cardiometabolic traits (see figure below). Given the particularly high correlation with IQ scores, it
is very likely that the above brain related enrichments are overstated (in addition to enrichments
for other functional categories).

Cross-mate phenotypic correlations with EA.
All statistically significant correlations are reported. Data from (Border, Athanasiadis, et al. 2022).

5.10 | Rare variant heritability and gene-level analyses

Theory

Traits under weak selection/neutrality are expected to be primarily associated with common
variation (see [4.4]), thus selection parameters provide a forecast of the expected rare variant
contribution. Is EA under weak or strong selection? Precisely quantifying polygenic selection
remains challenging due to the confounding effects of population stratification (more on this
later), which are particularly strong for EA. To mitigate this, (Howe, Nivard, et al. 2022) correlated
within-family effect estimates, which are expected to be free of confounding (though see the last
paragraph of [4.2]), with rare-variant statistics (SDS) that quantify “recent” selection in the past
2,000-3,000 years (Field et al. 2016). The correlation with EA was squarely at the null,
indicating no detectable selection in this very large sample. Notably, the population-level
estimator showed a nominally non-zero effect, further evidence of bias due to population
stratification in the conventional GWAS. Height was used as a positive control, as it exhibits a
strong North/South European gradient and a plausible relationship to fitness. As expected, height
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exhibited significant correlation with the SDS statistics and was the only trait in the analysis that
showed evidence of recent selection. This finding of no/weak selection on EA was consistent
with prior analyses based on the frequency/heritability relationship using common variants alone
(Schoech et al. 2019). Under this relationship <10% of the total trait h2g was expected to be
assigned to rare variants which, incidentally, was slightly weaker than the average analyzed trait.

Estimates of selection for EA and height.
Correlation with the SDS recent selection score shown for both traits using population (green) and

within-family (yellow) statistics; the latter expected to be free of confounding by population structure. Only
height showed significant evidence of selection.

Results from >300,000 sequenced exomes

(C.-Y. Chen et al. 2023) conducted the first large-scale rare variant study of EA, as well as two
other cognitive phenotypes (verbal/numeric reasoning and reaction time), in ~300,000 European
ancestry sequenced exomes. They estimated genome-wide exome burden heritability (see [2.4]
for methods, [4.6] for other results) across a range of variant classes and frequency definitions.
All rare burden h2g estimates were <1%, with the largest estimate coming from the least
restrictive variant threshold (consistent with weak selection where rarer/more pathogenic variants
do not explain substantially more heritability). This estimate places a very low ceiling on the total
contribution of rare coding burdens in individual genes.

Burden heritability regression results for EA from ~300,000 exomes.
Each row shows a burden h2g estimate for a given variant class. Data from (C.-Y. Chen et al. 2023).

Frequency
cut-off

Variant
category

Burden
heritability SE

0.0001 PTV -0.0002 0.00027

0.0001 missense 0.0011 0.00024

0.001 PTV 0.0004 0.00026

0.001 missense 0.0009 0.00025

0.01 PTV 0.0008 0.00024

0.01 missense 0.0025 0.00038

(C.-Y. Chen et al. 2023) subsequently aggregated carrier status of all rare pathogenic variants in
constrained genes into a single score, akin to a uni-directional rare variant PGI, and tested it for
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association with EA. The effect of a score built from protein truncating variants was -0.095
(R2=0.0015) and the effect of a score built from damaging missense variants was -0.053
(R2=0.0005). The genome-wide rare variant burden thus also explained very little of the
variance in EA. Next, the study evaluated whether genes from common GWAS were also
enriched for trait-associated rare variant burden – evidence of converging mechanisms between
rare and common causal variants. Surprisingly, the strongest enrichment was from genes
identified in GWAS of depression, then cognitive function, and then EA. The rare variant
architecture of EA may thus be genetically closer to the common architecture of
cognitive/psychiatric traits than to EA itself.

Prediction accuracy (R2) of common versus rare polygenic scores.
(a) Predictive accuracy of common within-family EA PGI (Okbay et al. 2022) vs. rare protein truncating

variant (PTV) and damaging missense burden from (C.-Y. Chen et al. 2023). (b) Enrichment of rare burden
in genes near common GWAS associations for a variety of GWAS. Rare PTV enrichment shown in orange,

rare damaging missense enrichment shown in green. Data from (C.-Y. Chen et al. 2023).

Finally, the rare variant burden in each gene was individually tested for association with EA,
producing six significant associations after multiple test correction. For context, similar burden
analyses of UK Biobank exomes identified 55 genes for standing height, 20-30 for blood cell
counts, and 15-20 for fat mass (Backman et al. 2021). Notably, all six associations were
deleterious and 4/6 had previously been associated with developmental or psychiatric disorders.
Thus, to the extent that rare variant effects appear to matter for EA, it is through deleterious
effects often at established syndromic genes. Surprisingly, even these large-effect genes were
often also associated with a diverse number of non-cognitive phenotypes, including taking pain
medication, blood biomarkers, bone/fat density, lung function, cancer, and lipid levels. These
widespread effects again highlight the challenge of inferring the precise mechanistic path from
genetic associations.

Rare exome-wide association study of EA in ~300,000 individuals identifies five hazardous genes.
Statistical significance (y-axis) versus physical position (x-axis) of each gene tested. Purple triangles

indicate associations significant after stringent Bonferroni correction. Figure from (C.-Y. Chen et al. 2023)
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5.11 | A word on adoption studies

The adoption design provides an alternative approach to distinguish direct and indirect genetic
effects. In principle, adoption severs the genetic correlation between children and their adoptive
parents, leaving only the direct genetic effect of the offspring genotype and the uncorrelated
effect of the parental environment. For molecular studies, this means h2g/PGI in adoptees are
estimators of the direct genetic effects. Additionally, by comparing estimates in adoptees to
population-level estimates, one can infer indirect genetic effects under two specific scenarios: (1)
if there are indirect effects via cultural transmission but no assortative mating, these will be
estimated accurately in the adoption design (the population PGI correlates with indirect + direct,
the adoptee PGI only correlates with direct, so the difference is indirect); (2) if there is assortative
mating but no indirect effect via cultural transmission, the indirect effect will be accurately
estimated at zero (both the population PGI and the adoptee PGIs will be biased upwards by
assortative mating and this will cancel out in the difference). In other words, if an indirect effect
is observed in the adoption design, then some amount of cultural transmission must be
present. These properties of the adoption design were demonstrated in simulations by
(Demange et al. 2022) and shown in the figure below.

The adoption design and estimates of indirect effects in simulations.
(a) The adoption design breaks the genetic (but not environmental) relationship between parents and

offspring and eliminates correlations due to assortative mating. P: Paternal, M: Maternal, O: Offspring, A:
Adopted offspring, EA: Educational Attainment phenotype. Genotypes shown in blue, direct effects in
green, indirect/environmental effects in orange. (b) Estimates of parental (post-natal) indirect genetic
effects under different simulation scenarios. The adoption design is uniquely unbiased (shown with red

star) in the presence of prenatal indirect effects or assortative mating. Figure from (Demange et al. 2022).
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In practice, adoption is a highly non-random process, which imposes additional complexities on
the data. These complexities have been extensively discussed in the sociology/psychology
literature but I will briefly review them here to aid the interpretation of molecular data:

● Adoptive environments are systematically different from the environments in matched
non-adoptive families. For example, (McGue et al. 2007) conducted environmental
surveys as part of an adoption study in the US and found that the adoptive parent had
significantly higher education (63% college grades versus 44% in non-adoptive families
and 26% in non-adoptive non-participants), SES, and occupation. Based on the GxE
findings above [5.7], this improved environment could be expected to decrease the h2g in
adoptees (in addition to increasing their mean phenotype).

● At the same time, adoption also often operates through selective placement, whereby
adoptive parents choose offspring that come from families more similar to their own (for
example, in the level of education). Selective placement induces a correlation between
the phenotype in the birth and adoptive parents such that the adopted offspring is no
longer raised in a statistically independent environment (Kendler et al. 2015). This
correlation is sometimes incorrectly interpreted as “heritability” when comparing adopted
offspring to their birth parents.

● As shown in simulations above, adoption designs do not estimate the effects of the
prenatal/maternal environment (and corresponding indirect effects). Notably, (McGue et al.
2007) also found 3x higher drug dependence in their matched non-adoptive families,
which is likely to influence the prenatal environment and be unaccounted for in the
adoptive design.

● Being adopted is itself correlated with genetic variation. (Cheesman, Hunjan, et al. 2020)
estimated the common SNP h2g of being adopted at 0.059 (s.e. 0.004) in the UK Biobank,
indicative of some small genetic differences between adopted and birth offspring. While
this h2g is very small, it is comparable to the weak direct h2g of EA itself, and may thus be
a strong relative confounder.

● Genetic variation associated with being adopted is negatively genetically correlated with
educational attainment (rg = -0.52 s.e. 0.065), as well as age at first birth, depression, and
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positively genetically correlated with obesity – all factors highly associated with SES
(Cheesman, Hunjan, et al. 2020). Adopted offspring will thus have systematically different
genetic values for certain traits/PGIs.

● To state the obvious, adopted offspring may simply be treated differently by their parents,
family, teachers, peers, etc. “evoking” different environments.

In short, while the adoption design eliminates certain biases, it also introduces new biases: no
measurement of prenatal effects, systematically higher EA environments and lower EA variance,
systematically lower EA and EA related genetic values, and complex structure due to selective
placement.

With that in mind, what insights can we glean from molecular analyses of adoption studies? First,
(Cheesman, Hunjan, et al. 2020) compared non-adopted to adopted individuals in the UK
Biobank, and found that EA PGI accuracy (R2) decreased from 7.4% to 3.7%. Because adoption
breaks the correlation with parental indirect effects, this provides orthogonal evidence that the
population PGI is inflated by indirect effects and that the direct effects are weak (though may, to
some extent, also be a consequence of GxE with the adoptive environment; see above).

Second, (Demange et al. 2022) conducted a similar analysis in the UK Biobank but partitioned the
EA PGI into its cognitive and non-cognitive components and compared across designs (figure
below). The “cognitive” EA PGI showed significant indirect effects (meaning, that the population
PGI effect was again higher than the effect in adopted offspring) whereas the non-cognitive PGI
did not. This was in contrast to sibling and trio-based designs showing substantial indirect effects
for both PGIs. One interpretation of this difference is that non-cognitive indirect effects (which are
more strongly genetically correlated with neighborhood deprivation (Demange et al. 2021)) occur
prenatally, and are thus not captured in the adoption design. Alternatively, GxE in the adoptive
families could be attenuating the indirect non-cognitive effects, or assortative mating in the
sibling/trio families could be inflating the indirect non-cognitive effects. Thus the adoption
analysis provides orthogonal evidence for cultural/indirect transmission on cognitive function
that cannot be explained by assortative mating alone.

Direct and indirect PGI estimates from three different family designs.
Analyses employed an EA PGI divided into “cognitive” (blue) and “noncognitive” (yellow) components and

tested for association with EA.
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Finally, a recent study of adopted offspring with genotyped parents employed an adoption
process that was less susceptible to selective placement (J. Beauchamp et al. 2023). Adoptive
parent PGIs explained 7.3% of the variance in adopted offspring EA, again confirming the
presence of indirect associations. The study additionally employed a variance decomposition
analysis to estimate the total variation attributable to genetic and non-genetic components. The
variance attributable to total genetic variation was non-significant but with a very wide standard
error. The variance attributable to the family environment was statistically significant and ranged
from 0.25-0.28, with the rest assigned to other environmental factors. A more complex
generalized model was also fit, yielding very similar family environment estimates and larger but
only nominally significant estimates of additive genetic variance. While still highly uncertain,
these estimates were strikingly consistent with the cultural transmission model estimates in
[5.6].

Variance decomposition from family-based models in adoptees.
Standard errors shown in parenthesis. Data from (J. Beauchamp et al. 2023).

Trait
Additive Genetic

Variance
Family Environment

Variance
Remaining Environment

Variance

EA -0.07
(0.30)

0.28
(0.11)

0.79
(0.22)

College 0.07
(0.32)

0.25
(0.10)

0.68
(0.26)

5.13 | A word on “natural selection” using EA PGIs
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Several studies have employed EA PGIs to evaluate the association between PGI and number of
offspring, which they refer to as “natural selection” (J. P. Beauchamp 2016; Kong et al. 2017;
Hugh-Jones and Abdellaoui 2022). Classically, natural selection is defined as genetic variation
that causally leads to increased/reduced fertility. Selection, together with heritability, then directly
drives the phenotypic response in subsequent generations, for example via the Breeder’s
Equation. Classical natural selection is also notoriously slow and, in humans, weak (more on this
in later sections) In these studies, however, the definition is flipped on its head: a PGI that is
largely indirectly correlated with environmental variation is being associated with fertility. In
essence, an environmental correlate (the PGI) is being tested for association with another
environmental correlate (number of offspring), and then wrapped in causal language.

Contrasting causal natural selection versus environmental/fertility correlations.
(a) The classical conception of selection where genetic variation increases fertility/fecundity. (b) An

alternative non-causal model where dynastic and stratification effects are correlated with fertility and also
correlated with genetics, inducing a confounded correlation between the two.

This potential contradiction is, in fact, alluded to in (J. P. Beauchamp 2016), arguing that “the
association between the score of EA and EA is not likely to be driven by the effects of culture,
the environment, or population stratification, and is likely to reflect the true causal effects of
multiple genetic variants”. We now know that this claim is incorrect and the PGI is heavily
confounded by cultural/environmental factors and at least some amount of stratification (arguably
this was already apparent in within-family analyses in the cited work of (Okbay et al. 2016)). These
studies nevertheless go on to make strong causal claims about ongoing human evolution and the
potential effect of genetic variation on inequality and societal structure.

Let’s pause and ask: what are we actually trying to estimate? If EA has non-zero h2g and people
with lower EA have more kids, then EA-associated genetic variation will also be correlated with
the number of offspring. Since we know that EA has non-zero h2g, this effect is expected and
does not require genetic analysis, one simply needs to look at birth rates by EA status in the
census. Given that the direct common h2g of EA is just 4%, we already know that the magnitude
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of any such effect is also likely to be very small. The question that molecular genetics can shed
light on is: how small and does it deviate from expectation? It is possible that the direct effects on
EA are weakly associated with fertility or not at all and the apparent associations are entirely
explained by the familial environment. Indeed, this was quantified by within-family analysis in
(Okbay et al. 2022) and the direct effect of the EA PGI explained just 0.3% of the variance in the
number of children born (see [5.8]). The causal common variant effect of EA on fertility is thus
essentially negligible. More generally, the direct h2g for “number of children born” was
estimated by (Howe, Nivard, et al. 2022) in siblings at 0.03 with a confidence interval spanning
zero. The causal contribution of all common variation to fertility (including mechanisms other
than EA) is also very low to non-existent.

5.14 | A word on latent assortment

A lingering question regarding assortative mating on EA is the possibility of “latent” assortment
that is stronger than the observed phenotypic assortment. If partners are pairing up based on
more heritable genetic factors that are strongly correlated with EA (e.g. other behavioral traits) or
are pairing up based on the latent genetic value (e.g. based on sibling/family matching) then
spousal genetic correlations will be higher than expected. In this case, the within-family h2g
estimates (e.g. RDR) will be more strongly biased downward and population-based estimates will
be more strongly biased upward (see [3.3]). Indeed, there is some evidence of latent assortative
mating, with (Okbay et al. 2022) estimating a significantly higher than expected PGI correlation in
mates, which was only partially attenuated by adjusting for EA itself, cognitive function, and
principal components. So there are two potential explanations: either individuals are pairing up
based on latent, heritable factors, or residual population stratification (which was documented in
the population PGI in (Young et al. 2022)) is inflating the genetic correlation.

Recent work by (Abdellaoui, Borcan, et al. 2022) sought to estimate the extent of genetic
assortment by leveraging an environmental shock. If EA can be changed while controlling for
genetics and produces a corresponding change in spousal correlation, that is evidence of
phenotypic assortment. Additionally, if the genetic correlation between mates is completely
explained by EA itself, that is evidence against latent/genetic assortment. The environmental
shock (Abdellaoui, Borcan, et al. 2022) exploited was birth order: later born children tend to have
fewer resources and slightly lower EA after controlling for family size and year of birth. As later
born children are not systematically genetically different from first-borns, this provides an
environmental shock that is free of genetic confounding.

Schematic of Socio-Genetic Assortative Mating.
Individuals pair up based on EA (green), which induces correlations in their PGIs (blue) and “socio-genetic”

correlations between scores and PGIs.
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As expected, birth order was (a) correlated with EA, (b) correlated with spousal EA, and, as a
direct consequence, (c) correlated with the spousal EA PGI (which the authors call “socio-genetic
assortative mating” or SGAM). This demonstrates that purely environmental factors contribute to
phenotypic assortment on EA. Furthermore, after conditioning on EA and income variables, the
association between spousal PGIs was no longer significant: decreasing from 0.057 (s.e. 0.01) to
0.011 (s.e. 0.01), as was the association between birth order and spousal PGI. This demonstrates
that the genetic correlations between mates can be completely explained by the EA
phenotype itself in the UK. Notably, this was not the case in a separate analysis in a Norwegian
cohort, suggesting that the amount of latent assortment can differ by cohort. As these quantities
were estimated in population-level analyses, the causal/direct effect of the PGI on assortment is
unknown, but this study provides evidence of negligible overall latent assortment in the UK.

5.15 | A word on EA PGI accuracy

While h2g is an unbiased estimator of the maximum achievable prediction r2, some of the above
analyses involved PGIs trained in a given sample which may have incomplete prediction
accuracy. Since the relationship between h2g, r2, and sample size is well established (see [2.1]),
one can use labeled data to fit these parameters and then project how the PGI will behave with
additional training data. (Okbay et al. 2022) evaluated PGI r2 as a function of down-sampled
training size in two target cohorts (the HRS and AddHealth). The best fitting parameters from
these analyses are an h2g of 0.16 and an effective number of variants of 90,000 (estimated by
minimizing the residual sum of squares to the average PGI r2 between HRS and AddHealth). This
is in line with the mean h2g of 0.15 observed above and ~60,000 effective variants observed in
prior studies (Yang, Weedon, et al. 2011). With these parameters, we can extrapolate from the
current prediction accuracy to that of larger studies. In (Okbay et al. 2022) the mean prediction r2
was 0.14 (with ~3.5 million training samples), which would be expected to reach an asymptote of
0.16 with ~10 million training samples. Thus the latest PGI achieves 88% of the maximum possible
accuracy and is unlikely to be superseded for some time. Likewise, if we assume that the direct
h2g is 0.05, then direct/within-family r2 with 3.5 million training samples is expected to be ~3%
(which is very close to the within-family prediction actually observed in (Okbay et al. 2022)),
reaching 4% with 10 million individuals. Emerging methods may also enable “correcting” PGI
estimates for this small amount of outstanding uncertainty (van Kippersluis et al. 2023).
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Extrapolation of EA PGI prediction accuracy versus GWAS sample size.
Extrapolated fit for the population PGI shown in gray, and for a “direct effect” PGI shown in green.

Previously reported estimates shown with colored dots, average of previously reported estimates shown
with gray dots. Unfilled circles represent extrapolations for specific sample sizes.

5.16 | A few words on scientific value and responsibility

Preface

[🔥While the previous sections aimed to provide a review and interpretation of the genetic
findings, the question inevitably comes up: what is the value of this research? Should it even be
conducted at all? The field does not shy away from this debate: this concern was raised (and left
unanswered) in the coverage of the very first large EA GWAS (Flint and Munafò 2013) and
continues to be raised with each subsequent study (Meyer et al. 2023; Burt 2022). Of course, the
research continues actively and in my opinion the discussion has fallen into a set of tired patterns
(often mirroring the broader, and even more tired “cancel culture” fights). Here, I will try to put the
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above results into a broader context and then present a more actionable perspective. It goes
without saying that this section is opinionated.]

Before diving in, it is worth noting that much of the early history of behavioral and psychiatric
genetics research used genetically motivated approaches to undo decades or centuries of
harmful misconceptions about the brain. Genetically informed studies demonstrated that child
autism was not caused by cold/aloof parents (“refrigerator mothers”, see: (Kanner 1943)) but by a
genetic predisposition; that addiction and compulsion were not simply indicators of poor self
control or lack of will; that psychiatric conditions were not demonic possession or inhuman
“madness”; and so on (though, it should be noted, that genetically informed research also
contributed to calls for forced sterilization of the mentally ill). In many cases, evidence was
triangulated across many different study designs and cohorts to synthesize a deeper
understanding of a mysterious phenotype (as an example, see the extensive, decades-long
investigation into the genetics of stuttering (Yairi, Ambrose, and Cox 1996)). These are all
examples of how causal rather than correlative reasoning, enabled by genetic analyses, led to
both an improved understanding of the world around us and also less suffering. We should
also keep in mind that behavioral geneticists have skin in the game too. They get harassed by
angry readers who misinterpret GWAS to imply genetic determinism even when no such
determinism is claimed. They are called to task for, often, minor stylistic choices in their work in
ways that other fields do not. And they are also often more responsive to these concerns than
other fields: writing a detailed FAQ and Supplementary Material for each major paper, providing
extensive discussion of the history of eugenics and Nazism in talks and in perspective reports,
etc. In fact, the few times you hear any geneticists acknowledge these sordid origins of the field
in a scientific presentation, most likely it’s a talk by a behavioral geneticist.

Premise

Coming back to the premise. Distinguishing correlations from causes is a fundamental goal of
science. Anyone can notice co-occurrences, but the scientific process empowers us to gain a
mechanistic understanding of their relationship or know that one is not identifiable. As Richard
Lewontin put it: “The analysis of causes in human genetics is meant to provide us with the basic
knowledge we require for correct schemes of environmental modification and intervention”
(Lewontin 2006). Understanding causes helps us operate more accurately in the world. Genetics
can be particularly powerful as a causal inference tool. But genetics can also be dangerous if it is
smuggling in correlations under the guise of causality. Thus, the key question in judging the
value of this research is whether it has provided us with basic knowledge of causes.

So … what did we learn?

Let us review the basic knowledge of causes gained from the past decade of research into the
genetics of educational attainment.

The direct effect of genetics on EA is extremely small, perhaps the smallest of any well-defined
trait rigorously evaluated to date. The population level estimate is heavily confounded by cultural
factors and stratification, to the extent that 50-75% of the predictive genetic variation is not causal
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when properly evaluated within families. Depending on the study, these cultural factors are either
largely or entirely explained by educational attainment or socioeconomic status in the parents or
relatives. In other words, we’ve learned that people who advance academically then create
environments for their kids to do the same, and this relationship is almost entirely
non-genetic.

Because the population PGI captures a combination of genetics, passive environment, and
stratification many studies have racked up provocative (but largely uninterpretable) correlations
with environments. Assortative mating occurs on educational attainment and so a tiny bit of
genetic variation will be correlated among partners. Environmental factors (such as birth order)
are correlated with educational attainment, and so a tiny bit of genetic variation will be correlated
with those environmental factors in spouses. Birth rates differ by education status and so a tiny
bit of genetic variation will be correlated with birth rates. Migration patterns differ by education
status and so a tiny bit of genetic variation will be correlated with migration patterns. These
correlations mirror their non-genetic counterparts and so are not surprising. Estimates of causal
effect sizes – the innovation that a genetically-informed study could bring – require careful study
designs and so are hardly ever bothered with.

For rare coding variants, the heritability is likewise tiny, explaining far less than 1% of the trait even
before restricting to directly causal estimates. The few genes that are implicated seem facially
plausible, often identifying previously known developmental delay genes in the general
population. While there is some convergence of rare and common variation, the most enriched
common phenotypes are non-EA traits – depression and cognitive function – further
underscoring the unclear nature of common variant mechanisms on EA. Rare variant analysis thus
provides a convenient means of identifying large influences on developmental delay at the
individual level, but has little impact on the population-level variance of EA.

What’s left? The rare non-coding genome has yet to be interrogated. For height and BMI, this
explained <25% of the total h2, mostly concentrated in coding regions (see [4.7]). Assuming the
same proportion for direct EA h2g, we could expect to explain an additional ~1% of EA variance
with rare non-coding variation. It is thus likely that rare non-coding variants will contribute a
negligible amount to overall trait variance and, as with coding variation, primarily through
developmental delay genes.

Can we use this knowledge causally?

As summarized in (Lee et al. 2018), the EA GWAS and PGI results had several intended
applications including: (1) causal instruments to study the relationship between educational
attainment, other traits, and environments; (2) controls for genetic confounding in population-level
studies; (3) an atlas of causal biological mechanisms. Environmental confounding presents a
problem for all three cases:

(1) The population PGI is not usable as a causal genetic instrument because it captures the
passive influences of non-genetic factors. In the population, the PGI is dominated by
correlations with the familial environment and population stratification on top of a small
amount of direct genetic influence. Any association with the PGI is simply telling us that
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some factor (genetic or environmental) related to education is somehow correlated
with the outcome, a finding that is true a priori for nearly any outcome. The ample
evidence of population stratification in the PGI, which remains to be fully quantified, may
preclude even this trivial interpretation. Depending on the balance of indirect associations
and stratification, a PGI correlation may actually capture no directly causal variation,
particularly under environmental shifts (see cross-generation example in [3.5]). Within
families, the problem is reversed: a PGI constructed from a population GWAS
underestimates the direct effect due to incomplete correlation between direct and
indirect effects in the population it was trained in (see [5.3]). An accurate causal effect-size
– the key component of a genetic instrument – is thus undefined either within or between
families.

(2) The population PGI is not usable as a control for genetic confounding and can induce
both loss of power and upwards bias. When testing for an association between different
environmental factors we often want to control for confounding from unmodeled genetic
variation. The classic example is the availability of books in the home either being a
causal influence on offspring EA (through increased reading) or confounded by
correlation with parental (and thus offspring) genetics (Hart, Little, and van Bergen 2021).
We may attempt to disentangle this relationship by including an offspring PGI as a
covariate. However, the offspring PGI captures both a small amount of offspring genetic
effects and a large amount of parental environmental variance and is thus susceptible to
many of the classical causal inference confounds. If books in the home improve parental
EA (and offspring EA), which in turn affects the offspring PGI through assortative mating,
then adjusting for the offspring PGI will attenuate the true causal effect of books in the
home. Even more complex biases arise in the presence of multiple environmental
confounders (see M-Bias in the figure below) or under study ascertainment, where
conditioning on the wrong covariates can significantly reduce power (Mefford and Witte
2012).

Consequences of adjusting for a PGI under different scenarios.
(a) What we hope to accomplish by including a PGI covariate to remove confounding. What we may

actually be doing is attenuating the true total effect (b) or inducing bias (c) when parental environments
(red) influence the offspring PGI (yellow) through assortative mating.

https://paperpile.com/c/UwWSe8/yKQGP
https://paperpile.com/c/UwWSe8/TCJ9a
https://paperpile.com/c/UwWSe8/TCJ9a


(3) In addition to being confounded in the overall magnitude, the individual effects, loci, and
genes from EA GWAS are also significantly confounded relative to the direct effects, as
evidenced by the low genetic correlation between population and direct effects on EA.
Cross-trait assortative mating induces widespread associations at variants that are not
causal for EA either directly or “indirectly”. Indeed, these variants could be causally
associated with height, BMI, smoking or other factors that appear correlated in spousal
pairs. This confounding precludes any clear biological insights from individual variants
or loci. As a “backdoor” into the genetic mechanism of intelligence, these
population-level associations are uninterpretable and susceptible to confounding from
non-cognitive factors in potentially dangerous ways.

In short, for a causal interpretation, all of the effects need to be re-estimated in family-based
GWAS. Basing the family-based analysis on the population analysis can induce bias due to
population stratification (Zaidi and Mathieson 2020), so the population level estimates cannot be
used at all.

Can we use this knowledge non-causally?

If we set aside the pursuit of causes, the picture looks a bit brighter:

● In randomized trials adjusting for the PGI can improve statistical power to identify a
treatment effect by accounting for a blob of random genetic and environmental variation.
In this case, randomization guarantees that there is no confounding and a causal
understanding of the covariate is no longer needed. The FDA now recommends adjusting
for baseline prognostic covariates in clinical trials (Center for Drug Evaluation and
Research 2023), so this kind of application is quite practical. PGI adjustment would be
expected to account for ~5% of the variance in EA after including basic covariates like
household education and income and may thus modestly reduce the cost of running an
RCT (Meyer et al. 2023).

● In some cases it is not necessary to distinguish between genetic and environmental
causes, and any correlation of education is useful as a hypothesis generating tool. This is
particularly the case in data where other measures of educational attainment are
unavailable. For example, (Antaki et al. 2022) investigated the association between an EA
PGI and symptom severity and case status for Autism Spectrum Disorder (ASD). They
found surprising compensatory patterns of association that may point to a new ASD
subtype. While these associations cannot be interpreted causally (and are almost certainly
not strictly causal), they can point to subsequent studies or, eventually, randomized trials
that do attempt to disentangle causal influences related to EA.

● The EA PGI may be useful if we simply want to predict at any cost, but there are still a lot
of unknowns. Because of the extensive environmental confounding, the EA PGI is likely to
be more sensitive to environment, geography, and time than typical genetic scores. For
example, (Kong et al. 2018) observed that the PGI was significantly less accurate in
parents than in the offspring, presumably due to temporally shifting environments. To
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what extent the PGI can be a useful prospective predictive tool remains to be quantified
with more longitudinal data, though we know the common population h2g is the upper
bound.

● The approach of using EA as a convenient proxy phenotype has been reasonably
effective in studying large-effect rare variants. For example, the subset of the UK Biobank
that provided information on EA is substantially larger than that which completed
cognitive function surveys, thus the former may provide more statistical power to discover
associations at the cost of environmental confounding. Unlike for PGIs or common
variants, rare variant interpretation and experimental follow up is also more
straightforward. However, the extent to which EA continues to be a useful proxy for
developmental delay (DD) phenotypes remains to be seen, especially as studies of DD
itself increase in size.

● Finally, EA studies have pinpointed fundamental flaws in genetic analyses and, often,
provided the first methods to estimate them: biases due to cultural transmission and
assortative mating, subtle population stratification (and how to estimate it), cross-trait
assortment, and selection/participation biases are all stronger or strongest on EA. It is
difficult to motivate and fund the development of methods for problems that don’t actually
show up in the data, and so EA has often served as an impetus to better understand
confounding. One does wonder though, if the same knowledge could have been
achieved with an environmentally confounded but much less controversial trait like
height.

Where are we and how did we get here?

The leap of faith for GWAS was the assumption that environmental confounding could be
controlled by restricting to genetically unrelated individuals with any remaining population
stratification controlled by adjusting for genetic ancestry components, thus enabling the
aggregation of massive cohorts. The first EA GWAS study was largely framed around this
sample-size / convenience trade-off: “One commonly proposed solution is to gather better
measures of the phenotypes in more environmentally homogenous samples. Our findings
demonstrate the feasibility of a complementary approach: identify a phenotype that, although
more distal from genetic influences, is available in a much larger sample” (Rietveld et al. 2013).
For the majority of non-behavioral traits, this approach has been surprisingly successful (see
[4.2]), but for Educational Attainment it was a spectacular failure in ways that seem obvious in
hindsight: it is a phenotype that is heavily influenced by parental environment, geography, and
assortative mating – the perfect circumstances for environment to leak into genetics. A field that
is highly critical of genetic confounding in observational studies was blindsided by
environmental confounding in genetic studies. Moreover, a major component of environmental
confounding could have been addressed by simply adjusting for parental educational status.

What happened next? In the five years since RDR was used to demonstrate major confounding
from indirect effects (Young et al. 2018), no larger RDR analyses have been conducted, no
attempt to replicate the findings in other cohorts, and no effort to quantify the precise
mechanisms of the confounding. Confounded population PGIs continue to be actively employed
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to make causal claims, some going so far as to argue that a causal analysis is unnecessary
because genetics has a “unique causal status” (Plomin and von Stumm 2022). Sometimes a
caveat is added that indirect effects may include “genetic nurture or assortative mating or
cultural transmission or stratification”, like the chef telling you the meal you just ate may have
been “a juicy steak or a slice of stale bread or a wet sock”. A recent consensus report (Meyer et
al. 2023) dedicated an entire section and multiple figures itemizing the heritability estimates for
EA, leading with an environmentally confounded twin estimate, while making no effort to actually
explain these sources of confounding (“to avoid additional complexity”). The report also
hastened to add that the predictive accuracy of the direct effect PGI is likely to increase without
ever mentioning robust estimates of very low direct h2g from sibling GWAS (even though such
speculative claims are criticized later in the same report). The true impact of many major biases
still remains unknown: study participation, cross-trait assortative mating, recent population
structure, etc. After the first EA GWAS in 2013, (Flint and Munafò 2013) noted “It seems that a
genetic association has been observed for “something,” but exactly what will require
considerably more work”. A decade and several million participants later, we still don’t have an
answer.

It may seem harsh to declare any scientific project that generated many manuscripts a failure but
EA studies have, over time, come to acknowledge this fact as well. Here’s a brief timeline, moving
from denial, to bargaining, to acceptance:

Study Discussion Point

(Okbay et al. 2016) “these results indicate that the score captures true polygenic signal but do not allow us to draw firm conclusions
about the extent to which the score is biased due to population stratification”

(J. P. Beauchamp 2016) [included as an example of the contemporaneous interpretation of EA PGIs]:
“As shown in Okbay et al. [2016], the association between the score of EA and EA is not likely to be driven by the
effects of culture, the environment, or population stratification, and is likely to reflect the true causal effects of
multiple genetic variants. … Thus, although it is not possible to rule out with certainty that my results are (at least
partly) confounded by stratification, stratification is unlikely to be an important concern.”

(Lee et al. 2018) “our within-family analyses suggest that GWAS estimates may overstate the causal effect sizes: if EA-increasing
genotypes are associated with parental EA-increasing genotypes, which are in turn associated with rearing
environments that promote EA, then failure to control for rearing environment will bias GWAS estimates. If this
hypothesis is correct, some of the predictive power of the polygenic score reflects environmental amplification of
the genetic effects. Without controls for this bias, it is therefore inappropriate to interpret the polygenic score for EA
as a measure of genetic endowment.”

(Okbay et al. 2022) “The population effect captures the sum of the direct effect, indirect effects from relatives (e.g., genetic influences on
parents’ education, socioeconomic status and behavior), other gene–environment correlation (i.e., correlation
between genotypes and environmental exposure, with population stratification being one possible cause) and a
contribution from the genetic component of the phenotype that would be uncorrelated with the PGI under random
mating but becomes correlated with the PGI due to the LD between causal alleles induced by assortative mating”

SSGAC FAQ for (Okbay et
al. 2022)

“Our finding implies that a substantial part of the predictive power of the polygenic index is due to some mix of
assortative mating and gene-environment correlation. For this and other reasons, we believe it is misleading to use
phrases such as “innate ability” or “genetic endowments” to describe what is measured by polygenic indexes based
on our GWAS estimates. These phrases incorrectly imply that the polygenic index is entirely capturing direct effects,
and they further ignore the potentially important role that environmental factors play in mediating direct effects.”
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(Young et al. 2022) “We examined the degree to which GWAS estimates reflect direct effects by estimating the genome-wide correlation
between direct and population effects, finding that population effects and direct effects are not highly correlated
(<0.9) for EA and cognitive ability.We found evidence that this is in part due to recent structure in the population
that is captured by PCs of the IBD relatedness matrix, but not by PCs computed from common variants. Our
simulation results suggest that a combination of vertical transmission and AM may also contribute to the low
correlation between direct and population effects.”

(Meyer et al. 2023) “The educational attainment PGI that can account for the highest percent of the total variance (or the PGI with the
highest R2) so far has in fact accounted for approximately 15 percent of the total variation among individuals in
education attainment, with only about a third of that, or 5 percentage points, associated with causal effects. (These
are the effects that can be detected within sibling pairs and therefore are plausibly causal.) The remaining
approximately 10 percentage points are due to an unspecified mix of environmental confounds, including
population stratification, various types of gene-environment correlation (including “genetic nurture”), and assortative
mating.”

What do the critics get wrong?

Because this debate has been going on for some time, it’s worth pointing out areas where
criticism of EA studies has veered into the unhelpful or outright erroneous:

● Attempting to partition “valid” versus “invalid” phenotypes and populations. It is
tempting to isolate EA (and other, typically behavioral, phenotypes) as being an a priori
invalid/sensitive/stigmatized trait that should not be studied. Such categorization into
levels of concern has even recently been attempted by the behavioral genetics
community itself (Meyer et al. 2023). Such efforts run into immediate challenges of
taxonomy: is schizophrenia a sensitive trait that shouldn’t be studied (is obesity)? And of
practicality: is it okay to study the genetics of EA to refute established stigma/stereotypes
but not to support them (and, if so, how does one know before the study has been
initiated)? Double standards are also inevitable. While it is generally appreciated that
reporting genetic differences by race is “sensitive”, the same sensitivities are, for some
reason, not applied to analyses of group differences by geography, income, or profession.
So, for example, a study reporting lower EA PGIs in coal mining towns is a cover article in
one of the most prestigious journals in the field (Abdellaoui et al. 2019), whereas the same
study stratified on race would have received special scrutiny at the same journal (“Why
Nature Is Updating Its Advice to Authors on Reporting Race or Ethnicity” 2023); in this
case special scrutiny for both studies would have been appropriate, but the double
standard is clearly already in place. What happens when you have vague and arbitrary
standards? They get ignored.

● Claims that EA is irrelevant to the study of public health. The environmental influence of
EA on health outcomes can be substantial, and understanding how these factors get
entangled with genetics is extremely important. Conditioning on measured EA in a
genetic analysis of some other trait, for example, could induce erroneous associations
between genetic variants correlated with EA via collider bias. Understanding these
confounds is critical to properly conducting and making sense of studies of other traits in
heterogeneous environments (i.e. all studies). This, of course, does not imply that any
study of EA is a public health study, some topics are obviously just sociological questions
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of general interest (more on this later). Second, EA does show (very weak) direct effects
on other traits observed in within-family analyses, and with further study these may point
to useful health policy interventions even if they do not explain meaningful variance in the
trait (recall: heritability is not related to malleability). In principle, rigorous genetic analyses
could short-list the most confident EA-trait relationship, which could then be promoted
into targeted randomized trials to actually estimate a causal effect. Likewise, rare genes
associated with EA may serve as targets for further research into identifying and
alleviating severe developmental delays.

● Claims EA (or other behavioral traits) have no genetic contribution at all. Qualitatively,
even in the complete absence of EA GWAS, genetic variation (particularly rare coding
variants) is known to be associated with developmental delays and this will in turn lead to
challenges with educational attainment. Quantitatively, several analyses have shown
statistically significant within-family genetic effects on EA. While a general interpretation of
within-family/direct effects has challenges, there is little doubt that these effects are
causal in some form or context. Claims that genetic variation contributes nothing to the
EA phenotype is not supported by the data nor basic intuition. This extends to related
spurious claims that EA GWAS findings are simply overfitting, do not replicate, or solely
identify stratification. These arguments are so readily refuted that they do damage to
other valid criticism.

Why it matters

There are important reasons to be talking about this work right now. The published studies are
sufficiently large, and done in multiple ways and across multiple cohorts, that we can reason with
accuracy about the sources of confounding. The primary GWAS efforts are essentially complete
and the natural next step will be to extend these studies to other populations, where both the
challenges of environmental confounding and the potential harm due to public misinterpretation
are heightened. These issues extend well beyond EA:

● Eroding public trust: As cliche as it may sound, when people participate in genomic
studies they are donating biological data with the explicit trust that the data will be used
responsibly. The UK Biobank, for example, was established as a resource to “improve the
prevention, diagnosis and treatment of illness, and the promotion of health throughout
society”. EA research is certainly a component of health understanding and promotion
(see above) but it also easily pushes into the realm of broad sociology: studies claiming
that second-born children tend to marry a spouse with “bad genes”, that certain
geographic regions or professions have lower EA , or that individuals with lower EA
genetics have more children and increase social inequality, etc. Regardless of what you
think of the value of these sociological questions, the underlying analyses have moved
beyond the remit of a public health biobank. They erode the public’s trust that their data
and funding is being used as promised. Over time, this makes it more difficult to recruit
underrepresented populations and it risks drawing general public skepticism of all
areas of genetic research.



● Driving health-oriented cohorts to clamp down on secondary use: Funding agencies
and consortia have begun responding to these boundary-pushing analyses by simply
defining sociological phenotypes to be off limits for genetic analyses. Industry
collaborators, who hold much more genetic data than academic institutions, have
followed suit and started withdrawing from collaborations. Imposing hard limits on entire
classes of phenotypes like this also does damage to the public health effort (rather than,
say, requiring clear definitions and the use of rigorous methods). Worse, the response
from behavioral geneticists has mostly been to petulantly complain that these studies
should open back up, or threaten to find other cohorts to continue doing the same
research, without any self-reflection for how to actually address the underlying concerns.
This mutual escalation is a recipe for more restrictions and fewer open cohorts.

● Vague and purposeless science: As a general scientific principle, it is important to have
clearly defined parameters and estimators. Muddled parameter definitions make it difficult
to evaluate the performance of new methods against old ones. The inability to rigorously
evaluate methods, in turn, leads to a lack of consensus on how to properly conduct
analyses and either a deluge of shoddy analytical work and a simultaneous exit of good
researchers. Muddled estimators make it difficult to communicate to the public what it is
we are doing and why it matters, and can encourage gross misconceptions that are
difficult to undo. This is how fields become insular and, eventually, irrelevant.

● EA is only the beginning: While the focus on this section has been on EA, the most well
studied behavioral trait, it is just one of many environmentally confounded measurements
that are being incorporated into genetic analyses. (Mostafavi et al. 2020) observed large
differences in within-family versus between-family prediction for many measurements in
the UK Biobank, including controversial and culturally loaded phenotypes like income,
sexual behavior, intelligence, neuroticism, and smoking/drinking. Notably,
smoking/drinking phenotypes may be even more confounded than EA and are of
undeniable relevance to public health. The challenges with environmental confounding
identified in EA studies are going to keep reappearing in studies of more conventional
phenotypes under cultural transmission.

Traits with substantial difference between within-sib and population-based prediction accuracy.
Within-sib prediction accuracy is proportional to the direct heritability and “standard”/population accuracy
is proportional to the population heritability. Training cohort size was specified to match statistical power

for the two study designs. Figure from (Mostafavi et al. 2020).
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What to do about it

Future studies of culturally complex phenotypes can make a number of design decisions to
better focus on the analysis of causes:

● Instead of trying to define sensitive phenotypes and groups, define the causal
parameters. For reasons outlined above, deriving guidelines for which traits are/aren’t
sensitive or stigmatizing has not worked and is not going to work. Instead, the field should
focus on defining and estimating robust causal parameters. Quantifying (1) the difference
between direct and population-scale h2g, (2) the correlation between direct genetic
effects and indirect associations, and (3) the influence of recent population stratification
provides a data-driven rubric for identifying environmentally confounded traits. In this
respect, EA is sensitive not because a committee put it into a special bucket but
because assortative mating, cultural transmission, geographic structure are major
confounds observable in the data. Studies that use genetic variation but do not control
for cultural transmission (or cannot demonstrate that it is absent) should be clear that they
are estimating an unknown component of environmental confounding – these are no
longer genetic analyses and any interpretation should be treated with great skepticism.
Novel correlations that emerge from these studies should be presented as hypothesis
generation, not discovery.

● Actually estimate and interpret the causal parameters. Accurate estimates of direct h2g
are woefully lacking for the majority of behavioral phenotypes, and thus the basic work of
estimating these parameters needs to be done. At present, the majority of behavioral
phenotypes are unknowably environmentally confounded. Methods like RDR can infer
the relevant causal parameters from just tens of thousands of genotyped families or



siblings and should be routinely applied. As WGS data becomes available, the RDR
approach can also be extended to rare variant burden. For traits where the genetic
correlation between direct and indirect effects is less than 1.0 (such as EA), confounding
due to population stratification needs to be rigorously ruled out. This could be
investigated using precise estimates of birth place and environment or using genetic
ancestry inferred from rare variants. Finally, for confounded traits, the specific
contributions of cultural transmission versus assortative mating need to be delineated
either analytically or through simulations. It is not sufficient to simply enumerate the
potential confounders in the Discussion section and leave it up to the reader to interpret
their contribution, as is the current trend. A parameter that is reported as some
combination of environmental correlation, assortative mating, and population structure is
meaningless.

● Get serious about environmental confounding. For population GWAS of culturally
transmitted phenotypes where within-family data is unavailable, it should be standard
protocol to adjust for parental environmental factors, just as it is standard protocol for
GWAS to adjust for genetic ancestry principal components. Indeed, such a “Familial
Control Design” (Hart, Little, and van Bergen 2021) has been advocated to partially
address genetic confounding in studies of exposures, and should likewise be employed
to evaluate environmental confounding in studies of genetics. More generally,
environmental measurements have been very poorly collected (e.g. using family size and
education as stand-ins for socioeconomic status) and a renewed focus on collecting
high-quality environmental data is also needed.

● Environmental correlations alone are not special. If the population PGI for a trait is
environmentally confounded, then correlations between that PGI and other environmental
factors (income, migration, family size, etc) are trivially expected. Using confounded
genetic variation to correlate two environmental factors does not make the resulting
correlation “genetic” in any meaningful way (and, in fact, the correlation could be
explained entirely by indirect factors or by cultural structure in prior generations). In cases
where an underlying environmental correlation was already known (e.g. education and
family size), the study investigators and reviewers should ask themselves whether the
study is really contributing anything novel at all by bringing non-causal genetics into the
mix.

● Address the many outstanding estimation challenges. As detailed in [3.6], a variety of
estimation challenges still remain for culturally structured traits, particularly related to
cohort ascertainment/selection and latent/cross-trait assortative mating. The influence of
these confounders remain largely unknown and make many results impossible to
interpret.

● Stop pretending sociology is public health. For studies that venture outside obvious and
direct public health questions, the connection to health needs to be made clearly and
credibly in the manuscript or the patient population needs to be consented for non-health
research. A trait simply being correlated with health outcomes is not sufficient justification
to study sociological aspects of that trait under the auspices of public health research.

https://paperpile.com/c/UwWSe8/yKQGP


The direct public health relevance should be clearly indicated so that other investigators
can explain to concerned participants why the study was conducted.

● Lead with relevant parameters instead of irrelevant ones. It is common to start
GWAS/PGI papers with a reference to large twin study estimates even though these
estimates are completely irrelevant. Twin models theoretically capture the contribution of
all genetic variation rather than the molecular variation being tested in the study, and they
are practically known to be inflated by environmental confounding. Moreover, relevant
metrics – typically common or rare h2g – can be estimated from the data itself and have
often already been derived in prior studies. Thus the relevant molecular parameters
should be reported, rather than impressive-sounding but irrelevant and confounded
parameters from family studies. For environmentally confounded phenotypes, it is also
typical to start with impressive population level h2g (or PGI r2) estimates and then
eventually close with the much smaller causal within-family estimates. This gets the
importance of results backwards and misleads readers into prioritizing confounded
results. One would ordinarily not start a paper by reporting the results prior to QC first and
then showing what remains after proper data cleaning, and the same holds for
“environmental QC” for environmentally confounded traits.

5.17 | Further reading

Commentary/review:

● (Roseman n.d.): Lay article on The Bell Curve and the history of hereditarian theories for
behavioral traits.

● (Meyer et al. 2023): Comprehensive though staid perspective on the history, present
state, and future opportunities in behavioral genetics with an extensive focus on EA.

● (T. T. Morris et al. 2022): Comprehensive review of methods to infer causal relationships in
behavioral genetics .

● (Coop and Przeworski 2022b): Perspective and warning for the interpretation of EA PGI
results.

● (Turkheimer, Pettersson, and Horn 2014): A review of classical genetic analyses of
personality and proposal to evaluate biometric/genetic correlations against a phenotypic
null rather than against a null of zero.

Key studies:

● (Rietveld et al. 2013), (Okbay et al. 2016), (Lee et al. 2018), (Okbay et al. 2022): The four
landmark EA GWAS studies.

● (Young et al. 2018): RDR quantification of total direct h2g of EA in Iceland.
● (Mostafavi et al. 2020): Analysis and consideration of PGI effects in different

environments.
● (Abdellaoui, Dolan, et al. 2022): Geographically conditioned heritability estimates for EA

and related traits.
● (C.-Y. Chen et al. 2023): The first large-scale rare variant analysis of EA, in the UK Biobank.
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🌿
Concepts: Drift and Selection

8.0 | Read these books instead!

The goal of this section is to provide a crash course of population genetics concepts needed to
read and understand studies of groups and group differences. The focus will therefore be on the
most relevant processes: weak additive and polygenic selection in human-sized populations over
the relatively recent period in human history (<100,000 years). But population genetics is a very
rich field with a number of thrilling historical developments and colorful personalities and to
understand the field one really needs to study it comprehensively and from foundations. It also
bears mentioning that (spoiler alert) not much interesting evolutionary development has
happened in recent human history, and thus some of the most fascinating aspects of evolutionary
biology – which occur over much longer time scales and often between species – will not be
covered here. To that end, I recommend a number of excellent foundational resources (many of
them free):

● Coop – Population and Quantitative Genetics [free]: Thoroughly covers the
fundamentals of genetic variation, the coalescent, mutation, and selection with many
inter-species examples.

● Pritchard – An Owner's Guide to the Human Genome [free, in progress]: More brief but
more human-focused treatment of genetic variation and selection, going all the way
through to human disease and GWAS.

● Hartl & Clark – Principles of Population Genetics [not free, ebook]: A classic pop gen
textbook that covers the principles of genetic variation as far as modern genomic studies
but stops before the GWAS era.

● Walsh & Lynch – Evolution and Selection of Quantitative Traits [not free, available in
print or pdf]: A remarkably comprehensive, almost encyclopedic, overview of evolutionary
genetics with detailed derivations and examples for nearly all commonly used models.

● Holsinger – Population Genetics Interactive Apps [free]: A number of interactive R-Shiny
apps for visualizing various processes in population genetics.

Lastly, code for generating all of the original figures in this section is available in an open source
repository and are also linked in each figure legend.

https://github.com/cooplab/popgen-notes/releases
https://web.stanford.edu/group/pritchardlab/HGbook.html
https://global.oup.com/academic/product/principles-of-population-genetics-9780878933082?cc=us&lang=en&
https://academic.oup.com/book/40062
https://kholsinger.github.io/PopGen-Shiny/
https://github.com/gusevlab/hsq_ancestry_examples
https://github.com/gusevlab/hsq_ancestry_examples


8.1 | Summary

● Common variants are very old. The average neutral polymorphism is estimated to be
~13,000 generations old (~390,000 years) and variants with >1% minor allele frequency
are expected to be older, in most cases much older, than the migration out of Africa
(Rasmussen et al. 2014).

● Variance due to neutral population differentiation (i.e. genetic drift) is very limited
since migration out of Africa. A 5% allele will have accumulated approximately 1% drift
variance, a 50% allele approximately 5% of drift variance (Waples 1989).

● A fundamental measure of genetic drift is FST, which is informally defined as the
correlation of random alleles within a subpopulation relative to the correlation of random
alleles in the “total” population at a single site (Wright 1951). FST has a relationship to
population size, divergence, and migration under very strict demographic assumptions
but an infinite number of demographies can produce the same FST.

● Formally, FST has been derived in two ways – Nei’s FST and Hudson’s FST – which can differ
substantially in real data (Bhatia et al. 2013). FST also depends strongly on the variants
used to estimate it, their frequencies in the contemporary and ancestral populations, and
the number of populations being analyzed (Alcala and Rosenberg 2022). Thus FST is a
fundamentally sample-specific parameter.

● Under neutrality, the group difference in a polygenic trait is bounded by the product of
(Hudson’s) FST and the trait heritability (Edge and Rosenberg 2015b). For divergent
continental populations (e.g. African/European) this is expected to be <1.5% of trait
variance for a typical trait with 10% h2g.

● Realistic weak directional (i.e. positive/negative) selection is not sufficient to
substantially alter allele frequencies between populations. Under estimates of a
selection coefficient of s=10-4 observed from disease GWAS, all common variants are
expected to remain common after only ~2,200 generations (65,000 years).

● For stronger selective coefficients (s>10-4) sample sizes of ~100’s are well powered to
identify differential selection between populations (Waples 1989). In contrast, very weak
selection is “effectively neutral” and cannot be distinguished from random drift.

● Expected frequency changes since the African migration are even slower under
stabilizing selection (selection for a specific fitness optimum) than under directional
selection, which is a likely form of selection on common complex traits. Paradoxically,
stabilizing selection increases the apparent differentiation at fitness-influencing
variants even if the trait optimum is identical between the populations (Yair and Coop
2022).

● Stabilizing selection under shifts in the fitness optimum behaves in phases: a rapid phase
of directional selection, and then a gradual phase of drift and the purging of genetic
variation. Variants that fix after the new fitness optimum are largely arbitrary (Hayward
and Sella 2022).

● Under stabilizing selection, genetic differences between groups can either be a
reflection of a difference in fitness optimum or a difference in the environment under
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the same fitness optimum (Harpak and Przeworski 2021). Group differences must
therefore be interpreted in their environmental context.

● We can alternatively think of heritability as a parameter that defines the phenotypic
response to selection in a controlled breeding experiment (i.e. The Breeder’s Equation),
and controlled selection experiments have produced highly stable and predictable
responses.

● In contrast, there are many examples of selection on natural animal populations which
elicited no response or even a negative response (Pujol et al. 2018). Quantitative
modeling of these populations has identified potential causes such as bias in the
heritability estimates, environmental confounding of the fitness trait (i.e. the wrong trait is
being selected on), and complex shifts in the environment. The apparent stasis in
response to selection in animals underscores the challenges of quantifying
evolutionary parameters related to heritability and selection.

8.1 | Populations in time

Most population genetics models are derived in terms of free parameters, which makes them
highly flexible and generalizable but also somewhat abstract relative to real world phenomena.
To make these models more concrete we will fix three specific parameters to their approximate
real world values: generation time, population size, and the selection coefficient. All of the
relevant notation and parameters used in this section are provided below, and we will then derive
and justify each one:

The first key parameter is time. The figure below (panel a) provides an overview of modern
human lineages, including extinct lineages from which only ancient DNA is available. The time we
will primarily focus on is the period after the African migration approximately 65,000 years or
~2,100 generations ago (assuming an average generation time of 30 years). Generations are the
fundamental unit of genetic transmission in the models of population genetics, though of course
large human populations are continuously reproducing.

Population history, migration, and inferred effective population sizes.
(a) Rough illustration of population history from present day (bottom) to hominin divergence (top). (b) A
geographic representation of population migrations. [Figures from (Nielsen et al. 2017)] (c) Inferred
effective population sizes from molecular data [Figure from (Terhorst, Kamm, and Song 2017)].
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The second key parameter is population size. In truth, human populations are and have been
continuously expanding (or shrinking), migrating, and intermixing. But in many cases it’s much
easier to model a hypothetical constant size, randomly mating population. To relate these models
to real data, we define a term called the effective population size (Ne) which is the size of the
hypothetical population that would produce the same level of genetic diversity (or genetic drift,
see next section). Ne is thus a mathematical abstraction that makes for easier inference by
turning the messy real world into the clean statistical model (see also: (Waples 2022) for a
different derivation of Ne in terms of the mean and variance in offspring). Moreover, in the case
that Ne varies over time, a corresponding constant size Ne can be derived as the harmonic
mean across generations (this will be justified later). The harmonic mean is heavily weighted
towards lower population sizes (e.g. the harmonic mean of 100 and 1,000 is 181; the harmonic
mean of 100 and 10,000 is 198) and is thus dominated by any bottleneck events (see figure
below). As a consequence, Nes will generally be low and similar in populations that experienced
bottlenecks.

Many methods exist to estimate Ne from genetic data, including over time, as shown in (panel c)
in the figure above taken from (Terhorst, Kamm, and Song 2017). The major shifts here are: (1)
non-African populations (CEU, CHB, GIH, JPT, TSI) experiencing a major population bottleneck
~50k years ago; (2) African populations (LWK, MKK, YRI) experiencing a mild bottleneck 10k-100k
years ago; (3) all populations experiencing recent exponential growth. For European populations
prior to the very recent growth the constant Ne is generally taken to be at least 10,000 and we
will use this as the representative parameter for models in this section. The figure below provides
some examples of populations with exponential growth and/or bottlenecks that still produce an
Ne = 10,000 in the past 2,000 generations.

https://paperpile.com/c/UwWSe8/vQMHq
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Two populations with Ne=10,000
(left) exponential growth from 1,000 to N=~22M; (right) bottleneck to 25% followed by exponential growth

to N=~120k. [code]

8.2 | Allelic drift and age

With time and population size, we can start to reason about changes in the frequencies of
genetic variation within a single neutral population, known as genetic drift. Variants under neutral
drift stay at the same frequency in expectation (because no directional force is acting on them)
but fluctuate due to the randomness of generational transmission. A polymorphism starting at
frequency p (and alternative allele with frequency q = 1 - p), drifting for t generations through an
Ne-sized population will have drift variance approximately equal to:

See (Waples 1989) for a complete and exact derivation.

A useful distributional parameter to keep in mind is that if alleles are drawn from an n=2 Binomial
distribution with mean p, then the variance across draws is [2p(1-p) = 2pq], and we will see some
flavor of this variance term reappear in many of the subsequent derivations. In this equation we
can see that drift variance increases in proportion to the starting variance of the polymorphism
itself, the length of the drift process in generations, and inverse of the Ne (meaning larger
populations have “slower” drift or less drift variance). In practice, this is a bounded process and
when the polymorphism drifts past the boundary (0 or 1) it is fixed and no longer polymorphic in
that population. For moderately sized populations like humans after the out of Africa
migration, drift is quite slow. For example, a 5% allele drifting for 2,100 generations in a
population with Ne=10k will have drift variance of 0.05*0.95*2,100/20,000 = 0.5%, or an
approximate 95% confidence interval ranging from 0-19%. In real data, population allele
frequencies also need to be estimated and this adds an additional bit of sampling variance,
shown in the figure below (in modern datasets with thousands of individuals this variance is
negligible).

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/neffective_10k.R
https://paperpile.com/c/UwWSe8/7QG3u


Variance due to drift and sampling.
The expected variance in allele age for a 5% allele: shaded region shows the variance of the population
frequency over time, lines show the additional variance due to sampling under different ancient (n0) and

modern (nt) sample sizes. [code]

We can also think about drift in the opposite direction: for an allele of a given frequency p, how
long did it take to drift there (i.e. the expected allele age) or, for a brand new allele in the
population, how long would it take to drift to frequency p. The expected allele age in generations
is:

See (Kimura and Ohta 1973) for initial derivation and (Slatkin and Rannala 2000) for review, including
derivation of confidence intervals and alternative estimators.

Intuitively, allele age increases with frequency/variance (it takes longer to get to a higher
frequency) and with Ne (drift is “slower” in larger populations). Taking our 5% allele from above,
it’s expected age is -4*10,000*ln(0.05)*0.05/(1-0.05) = 6,306 generations (or ~190k years,
approximately the origin of modern humans). In other words, just as drift is slow, common
variants are old. As shown in (panel b) in the figure below, 1% alleles are approximately as old as
the out of Africa migration, 5% alleles are approximately as old as modern humans, and 30%
alleles are approximately as old as the divergence of hominin lineages.

Allele age in theory and real data.
(a) The expected allele age as a function of derived allele frequency. (b) Estimated average allele ages

from real data by functional annotation. (c) Estimated allele age from real data by derived allele count (out
of 108 genomes), (c and d) Figure from (Rasmussen et al. 2014). [code]

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/drift_variance.R
https://paperpile.com/c/UwWSe8/JlxI1
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https://github.com/gusevlab/hsq_ancestry_examples/blob/main/allele_age.R


While the above derivation relies on a simplistic population model, more recent methods can
estimate allelic age while using information across multiple polymorphisms. One such method –
ARG Weaver (Rasmussen et al. 2014) – relies on inferred “recombination graphs” and was applied
to large scale whole-genome sequencing data to estimate allele ages in different functional
regions. As shown in (panel c) of the above figure, the average estimated age of a neutral allele
was ~13,000 generations (390k years: between the divergence of hominid lineages and the
origin of modern humans). The “youngest” allele category were likely damaging coding variants,
with an average allele age of ~5,000 generations (150k years: between the origin of modern
humans and the start of the migration out of Africa). In (panel d) of the above figure, the alleles
are further broken down by derived count, where we again see that neutral low frequency alleles
(1 out of 108 or ~1%) are on average 4,000 generations old (~80k years ago) while more common
alleles (4-5 out of 108 or ~5%) are on average ~15,000 generations old (~450k years ago). Again,
the more functionally important / damaging alleles are consistently “younger”, likely due to the
action of negative selection which we will discuss next.

8.3 | Alleles under selection

The third key parameter is the selection coefficient, which relates genetic variation to fitness and
deviations from neutrality. We can think of fitness in two ways: as a measure of fertility, the
expected number of offspring per individual; or of viability, the probability of surviving from birth
until reproduction. Because we are often modeling relative dynamics, fitness is further normalized
to some mean/baseline to define relative fitness (w). Finally, the additive selection coefficient (s)
defines the change in relative fitness for each allele of a polymorphism: [waa = 1, waA = 1 + s, wAA = 1
+ 2s]. Thus, s = -1 means the A allele leads to complete infertility, s = 0 means there is no change
in fitness and no selection, and s = 1 means the A allele heterozygotes and homozygotes have 2x
or 3x the relative fitness. Selection coefficients can also be defined more generally to model
non-additive fitness but we will stick to additive effects here. As we saw in [4.1 and 4.4], common
traits are generally driven by tens of thousands of common variants each of which has a weak
effect on the trait and is under weak or neutral selection. As a representative selection
coefficient, we will use s = -0.0007, the average estimated in a study of 28 common traits (Zeng
et al. 2018) and broadly consistent with other recent estimates of s in the range of 10-4 to 10-5

(Simons et al. 2022).

https://paperpile.com/c/UwWSe8/xLBSK
https://paperpile.com/c/UwWSe8/IDK7g
https://paperpile.com/c/UwWSe8/IDK7g
https://paperpile.com/c/UwWSe8/H52OG


Given an allele of frequency p and an additive selection coefficient s, we can then compute the
expected number of carriers of each allele in the next generation and renormalize to get the
expected frequency change. Specifically, the per-generation change in frequency is:

See the work of JS Haldane (Haldane 1933) for derivations.

As this is a per-generational change that depends on the prior allele frequency it can be hard to
visualize the long-term trajectories, so let’s run the iterative process for ~2,100 generations with
an s of -0.0007 starting at different initial frequencies:

Sample allele frequency trajectories under directional selection.
(left) Weak negative selection for variants starting with frequency 0.5, 0.25, and 0.05. (right) Weak positive
selection for a new variant starting at 1/N. Note these are “exact” estimates of expected frequency and do

not account for drift, which will add variance (see above). [code]

A few things to notice in the figure above regarding the 65kya time-frame. First, common variants
will generally still be common because the speed of selection depends on the starting frequency.
For example, a 5% allele is only expected to drop to a ~1% frequency (or, alternatively, a modern
day 1% allele is not expected to have been more common than 5% in the ancestral population).
Second, larger frequency shifts happen for more common variants (while still generally remaining
common): for example, a 50% allele is expected to drop to an 18% frequency. For such common
alleles it is likely that the selective effect must have changed, since a common variant is either
neutral variant drifting for a long time or previously under positive selection. Third, new mutations
under weak positive selection do not have time to increase to appreciable frequency: an allele
that starts at 1/10,000 is expected to increase to just 2/10,000 in 65k years. For this reason, we

https://paperpile.com/c/UwWSe8/xT2DH
https://github.com/gusevlab/hsq_ancestry_examples/blob/main/selection_trajectory.R


will generally ignore mutation rate and the contribution of novel variants in recent time (but see
[later] on mutational load).

An alternative way to think about these trajectories is in terms of the expected time it would take
for an allele to move from one frequency to another:

See (Crow and Kimura 1972) for derivation.

Thus, with s = -0.0007, for an allele to move from 95% to 1% (i.e. nearly fixed to low-frequency) is
expected to take ~11,000 generations (or ~323,000 years). For an allele to move from 10% to 1% is
expected to take ~3,400 generations (or ~100,000 years). Again we see that shifts from
common to rare frequency are very unlikely to occur in the recent ~2,100 generation span.

Stabilizing selection

While the above models of simplistic directional selection provide clear intuition, it is more likely
that human populations are evolving under stabilizing selection. Under stabilizing selection,
fitness is maximized when the mean phenotype is at the optimum, with lower fitness below or
above the optimum. As an example we can think of weight, where either being extremely
overweight or extremely underweight leads to poor health and lower fitness (and this is likely true
of many traits). For each allele, this results in competition between the directional effect the allele
has on the fitness phenotype (selection wants to maintain alleles that move the phenotype
towards the optimum) and the excess variance generated by the allele (selection wants to keep
variance low by eliminating heterozygotes). When the trait is at its optimum and the variant has a
small effect on the trait (and thus on fitness), the fitness advantage of reducing
variance/heterozygosity wins out (also known as underdominance) and alleles are driven to
fixation in both directions. Thus, and somewhat paradoxically, stabilizing selection will continue to
purge an allele out of the population by moving a more frequent variant to complete fixation and
a less frequent variant to complete elimination. For weak, additive stabilizing selection at a fitness
optimum, this can be modeled as follows, where the parameters are as above and [β] is the effect
of the variant on the fitness trait:

See (Koch and Sunyaev 2021) for concise overview and (Walsh and Lynch 2018) for more detailed
derivation and historical references.

What does this look like over the recent (65k years) time-scale? Very little. We can see in the
equation that alleles are selected against in proportion to their deviation from 50% (with alleles
residing perfectly at 50% not experiencing selection at all). So a 25% allele will be pushed down
to 18% (compared to 7% under pure negative selection), whereas a 10% allele will be pushed
down to 3% (compared to 1% under pure negative selection). We can zoom out to 650k years and

https://paperpile.com/c/UwWSe8/OGRuO
https://paperpile.com/c/UwWSe8/BxJE5
https://paperpile.com/c/UwWSe8/NqXXB


start to see more substantial changes: a 10% allele will become rare after ~150k years; a 25%
allele will become rare after ~375k years. In other words, stabilizing selection penalizes
heterozygosity and moves alleles away from being common (in both directions) at a rate that is
even slower than pure directional selection.

Sample allele frequency trajectories under stabilizing selection.
(left) Expected allele frequency after thousands of years (x-axis) of stabilizing selection at s=0.0007 and
with β (the effect on the fitness trait) set to 1.0. (right) Same as left but over a longer time period. For each
mutation, plotting is stopped when the minor allele frequency drops below 1% (i.e. no longer common).

[code]

8.4 | Selection and drift

As noted, the above derivations are “exact” and do not include variance due to drift (which is why
they do not rely on Ne). One way to incorporate drift into our modeling is to compare the
probability of fixation (going from being in one individual to present in all individuals) for an allele
under selection to the probability of fixation for an allele under neutral drift. For alleles under
strong selection, fixation should be impossible, but a question we may be interested in is whether
certain selection/drift dynamics are sufficient to keep or slow deleterious mutations from fixing.
This scaled fixation probability is derived as:

See (Kimura 1957) for initial, and quite complex, derivation and (Cash 1977) for a simpler one.

Notably, the relationship is only dependent on [4*Ne*s], a key population genetics parameter.
When [4*Ne*s] is much less than 1, alleles are effectively neutral, meaning their probability of
fixation (and general movement through the population) is similar to that of a neutrally drifting
allele (for Ne of 10,000 this corresponds to an s<2.5x10-5). Now let’s look at this relationship as a
function of Ne for a few different weak selection parameters:

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/selection_trajectory.R
https://paperpile.com/c/UwWSe8/2uEtj
https://paperpile.com/c/UwWSe8/aLOd2


Probability of fixation relative to neutral drift.
The relationship between Ne (x-axis) and the scaled probability of fixation (y-axis) for three different values

of [s]. [code]

What we see is that for human sized populations (Ne>10,000) selection is able to keep new
deleterious variants from fixing for weak s of at least -0.0007, similar to what is seen for a
typical GWAS variant. It is only for very weak s of -10-4 or -10-5 that variants start to behave like
neutral alleles drifting through the population, and can reach high frequencies.

Lastly, we can put these concepts together and look at what happens to novel alleles under
different drift and strong positive selection parameters. As expected, drift increases the variability
in allele frequencies over time, and positive selection moves alleles closer to fixation. However,
for GWAS-level selection we appear to be primarily in the (panel b) regime of low drift and nearly
neutral selection.

Allele frequency trajectories under drift and selection.
(a) High drift (Ne=500) with no selection; (b) Low drift (Ne=10,000) with no selection; (c) High drift (Ne=500)
with moderate selection (s=0.005); (d) Low drift (Ne=10,000) with moderate selection (s=0.005). Figure

adapted from (Desbiez-Piat et al. 2021). [code]

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/p_fixation.R
https://paperpile.com/c/UwWSe8/QiMBE
https://github.com/gusevlab/hsq_ancestry_examples/blob/main/frequency_simulation.R


8.5 | Testing for selection between populations

Having defined the dynamics of genetic variation in one population, we can now expand to two
populations and test whether a variant is under differential selection (aka divergence).
Importantly, to establish differential selection we need to test whether the difference in frequency
is more than expected from drift, not just more than zero. If we know the divergence time and the
population Ne’s, divergent selection can be easily tested by applying the Waples drift variance
equations derived above to both allele frequencies observed (as well as accounting for
sampling). Let’s run some simulations and evaluate the statistical power to detect varying levels
of selection in this way, using hypothetical data from two modern-day populations with
Ne=10,000 and a complete divergence ~2,100 generations ago (e.g. the out of Africa migration):

Power to distinguish selection from drift.
(left) Statistical power to detect selection from drift for pairs of allele frequencies in two populations (at

p<0.05) with n=100 samples in each. (middle) same as left but with n=1,000 each. Entries with >20% power
are labeled. (right) The selection coefficient corresponding to each allele frequency shift is shown in

-log10; strong selection shown in dark purple, weak selection in purple; nearly neutral selection in shades
of blue. [code]

The overall takeaway is consistent with our estimates of the scaled fixation probability: for alleles
under strong selection there is ample power to detect them; there is still some power to detect

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/selection_power.R


moderate/weak selection (s between 0.001 and 0.0005; lighter purple in the right panel) which
just covers the estimated mean for complex traits; but there is no power to detect very weak
selection (s<5x10-4, shades of blue in the right panel), as expected for the nearly neutral range.
The other observation is that the sample size difference between n=100 and n=1000 (left and
middle panels) is mostly negligible, this is because the inability to detect very weak selection is
not due to insufficient measurements/observations, but due to hitting a parameter barrier
imposed by neutral drift variance.

8.6 | Differentiation within/between populations / FST

Definition

Having established the dynamics of drift at a single time in one population, we may also be
interested in quantifying genetic drift/differentiation between populations. This concept is
parameterized by the “Fixation index” or FST (where “S” stands for subpopulation and “T” stands
for total population). FST is a fundamental population parameter and its definition, interpretation,
and estimation has been approached from many different perspectives. The classic definition of
FST for a single site is “the correlation between gametes chosen randomly from within the same
subpopulation relative to the [total] population” (Wright 1951; Holsinger and Weir 2009). In its
simplest form, FST is then defined as:

where [HS] is the heterozygosity (i.e. [2*pS*qS]) in the sub-population (or averaged across
sub-populations) and [HT] is the heterozygosity in the “total” population (2*pT*qT). FST will be high if
individuals in a subpopulation are much more likely to share an allele (i.e. be correlated) than
individuals in the total population (i.e. heterozygosity in the subpopulation is low); FST will be zero
if [HS = HT] and individuals in the subpopulation are no more similar/correlated than in the total
population (aka panmixia).

This definition seems simple enough, but what precisely “total population” means has been a
source of some dispute. The total population is sometimes treated as an ancestral/base
population (Cockerham 1969), “replicates” of the current population (Weir and Hill 2002), or the
combined sample (Nei 1973, 1986). See (Bhatia et al. 2013) for a detailed discussion of
interpretation in their historical context, which we’ll rely on for most of the following overview. As
a consequence, there are two primary FST parameters – a parameter related to in-sample
variance and a parameter related to population drift. We will define these in turn.

Nei’s (1973) FST

The classic parameter of (Wright 1951; Nei 1973) is defined in terms of variance/correlation in the
sampled data. We note the year (1973) to distinguish this parameter from a redefined FST in (Nei
1986) which differs by a factor of two. If we define total-population frequencies {pT,qT} as the

https://paperpile.com/c/UwWSe8/10Pgd+Xy64a
https://paperpile.com/c/UwWSe8/EqMhv
https://paperpile.com/c/UwWSe8/yF63e
https://paperpile.com/c/UwWSe8/8vvEX+CrKQL
https://paperpile.com/c/UwWSe8/1TFCY
https://paperpile.com/c/UwWSe8/10Pgd+8vvEX
https://paperpile.com/c/UwWSe8/CrKQL
https://paperpile.com/c/UwWSe8/CrKQL


average of the within-population frequencies, then FST is derived in terms of the ratios of the
average within-population heterozygosity and the total-population heterozygosity. For two
populations {1,2}, this is:

See (Coop 2022) for a succinct derivation and connection to Wright’s F-statistics.

We see our old friend [2pq], the variance of a single site, and Nei’s FST is thus often interpreted
to estimate the total genetic variance attributable to “between population” variance, or one minus
the variance attributable to average “within population” variance. A second form is also shown, to
connect this parameter to the squared difference between the alleles [(p1 - p2)2] normalized by
twice the total-population variance ([2*2pTqT]).

Hudson’s FST

The more recent parameter of (Hudson, Slatkin, and Maddison 1992; Reich et al. 2009; Bhatia et
al. 2013) instead defines the “total population” as a hypothetical ancestral/founder population.
This provides additional useful interpretation for FST between modern-day groups that are derived
from the ancestral population (with strict assumptions of random mating and no migration).
Specifically, Fi

ST for population [i] can be defined as “the correlation between randomly drawn
alleles from a single population relative to the most recent common ancestral population” (Weir
and Hill 2002; Bhatia et al. 2013). For a biallelic polymorphism with current and ancestral
population allele frequencies {pi,panc} respectively, the population-specific Fi

ST is the total drift
variance since the ancestral population:

Generative model from (Bhatia et al. 2013) for population-specific Fi
ST and cross-population FST in terms of

variance on the derived alleles from an ancestral population. [pi] are frequencies in population [i] and [panc]
are frequencies in an ancestral population.

The FST between two contemporary populations is then just the average of their Fi
ST to the

ancestor (shown on the right). Importantly, FST is now defined in terms of hypothetical populations
rather than the samples in the data. Of course, it is rare to have genetic data on the ancestral
population and know [panc], but these relationships provide intuition for the generative process
and how to think about FST between contemporary groups. Finally for an allele {p1,p2} in two
contemporary populations respectively, FST is derived as:

https://paperpile.com/c/UwWSe8/rg7oa
https://paperpile.com/c/UwWSe8/dRGiA+TFJnt+1TFCY
https://paperpile.com/c/UwWSe8/dRGiA+TFJnt+1TFCY
https://paperpile.com/c/UwWSe8/yF63e+1TFCY
https://paperpile.com/c/UwWSe8/yF63e+1TFCY
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See (Hudson, Slatkin, and Maddison 1992; Reich et al. 2009; Bhatia et al. 2013) for derivation and relation
to population drift.

Practical differences

These two formulations have created some confusion when different studies used different
parameters (in addition to estimating them in different ways). Nei’s FST is perhaps the most widely
referenced (it is currently the Wikipedia definition in an alternative form). Whereas, Hudson’s FST

is more commonly applied to population genetics analyses due to its implementation in software
such as EIGENSOFT (which, ironically, was used to generate the figure for the Wikipedia
definition). By comparing the above derivations, we can see that Hudson’s FST differs from Nei’s
FST only in the way it defines the denominator i.e. the total/between-group heterozygosity
(specifically, Hudson’s FST denominator omits an [p1q1+p2q2] term). This translates into nonlinear
differences between the two parameters as a function of allele frequency (see figure below). In
short, the choice of FST parameter can have a substantial impact on the results.

Behavior of FST parameters as a function of frequency.
Estimated FST for a single site as a function of the allele frequency in one population (p1) and range of

frequencies in the other (p2). [code]

Relationship to other population parameters

https://paperpile.com/c/UwWSe8/dRGiA+TFJnt+1TFCY
https://en.wikipedia.org/wiki/Fixation_index
https://en.wikipedia.org/wiki/Fixation_index#/media/File:FST_no_color_scale.png
https://github.com/gusevlab/hsq_ancestry_examples/blob/main/fst_nei_hudson.R


When defined as above in terms of average drift from an ancestral population, Hudson’s FST

relates directly to the corresponding Ne over time:

See (Bhatia et al. 2013) for derivation. [i] is the sub-population, [g] is the number of generations to the
ancestral population, and [Ni,t] is the population-specific effective population size in each generation.

Here we can see components of the Waples drift variance equation from earlier but without
consideration of allele frequency (because FST is a population-level estimate of drift). In principle,
if either the divergence time in generations (g) or the effective population size history (Ne,t) is
known, then FST computed from data can be used to estimate one parameter from the other.

Alternatively, under a simple island model where multiple populations have diverged to fixed Ne’s
but continue to mix with a migration rate of [m], Nei’s FST can also be related to these
population/migration parameters as:

See (M. C. Whitlock and McCauley 1999) for derivation and caveats. Where [m] is the migration rate in an
island model.

A direct consequence of these relationships is that the same FST value is compatible with many
different population demographics. See (Myers, Fefferman, and Patterson 2008) and (Bhaskar
and Song 2014) for more discussion of this “identifiability” issue and its applicability to inference
from the broader site frequency spectrum. For example, in the above population divergence
model, FST will be the same for any fixed [Ne*g], meaning that small populations that diverged
recently will have the same FST as large populations that diverged long ago (because drift is
slower in large populations). And in the above island/migration model FST will be the same for any
fixed [Ne*m], meaning that small populations with large migration rates will have the same FST as
large populations with small migration rates (again, drift is slower in large populations so the
migration rate needs to be smaller to keep divergence high). We can see these equivalences for
different parameter settings in the figure below.

FST as a function of divergent drift or island migration.
(left) Within population FST as a function of generations of divergence (x-axis) under a fixed Ne. (right) FST

as a function of migration rate (x-axis) in an island model under a fixed Ne. In both figures results are
shown for Ne of 100, 1000, and 10,000 and points are indicated for a single representative case where

multiple parameters produce the same (Hudson) FST values. [code]

https://paperpile.com/c/UwWSe8/1TFCY
https://paperpile.com/c/UwWSe8/ULv6a
https://paperpile.com/c/UwWSe8/PVprR
https://paperpile.com/c/UwWSe8/t7eXB
https://paperpile.com/c/UwWSe8/t7eXB
https://github.com/gusevlab/hsq_ancestry_examples/blob/main/fst_drift_migration.R


Keep in mind that these are just illustrative examples, as population sizes are never constant, and
FST does not account for the influence of new mutations or selection. More advanced methods
have been developed that use other F-statistics within and across populations for more complex
demographic inference (Peter 2016), but the challenge of identifiability remains.

Estimation

In the above derivations, FST is defined at a single hypothetical site and without consideration for
sampling. In practice, FST needs to be estimated from sampled data and also, typically,
aggregated across sites to get a population-level average. These steps introduce a surprising
amount of complexity. Just as there are multiple definitions of FST, there are multiple estimators
and ways to average them.When sample sizes are small or differ greatly between populations,
these estimation choices have led to substantial differences in interpretation of population
history. (Bhatia et al. 2013) is again highly recommended for a detailed discussion of these
challenges and applications to real data. Here, we will briefly reiterate their recommendations.
First, they derive a Hudson FST estimator that is not heavily biased by different sample sizes in the
two sub-populations. Specifically, given samples from two populations with estimated allele
frequencies [p~] (with the ~ used to indicate a sample average), and sample sizes [n], the Hudson
FST estimator (Hudson, Slatkin, and Maddison 1992) is derived as:

Hudson FST between two populations from (Bhatia et al. 2013). [~p1] and [~p2] are the estimated
frequencies in the two populations; [n1] and [n2] are the sample sizes.

Second, they propose a “ratio of averages” for aggregating estimates across multiple markers.
Computing the average numerator and denominator separately and then taking the ratio

https://paperpile.com/c/UwWSe8/D4coA
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substantially reduces the variance of the estimate and potential bias from rare variants with highly
uncertain estimates. This choice can have meaningful effects, with FST estimates sometimes
dropping in half when using an average of ratios in real sequencing data with rare variants. Third,
being clear on how the SNPs used to compute FST were selected because FST is highly specific to
a given set of variants. More on that in the next section.

Ascertainment biases and theoretical bounds

FST estimates can be heavily influenced by the variants they are being estimated from (i.e. the
variant ascertainment). As every variant needs to be polymorphic in at least one of the
sub-populations being tested in order for heterozygosity to be defined, a choice needs to be
made for which polymorphisms to include. Additionally, analyses restricting to common variation
(as is typically collected from SNP arrays) may produce different estimates from those using all
variation. The impact of frequency-based ascertainment on the estimated FST will have a complex
relationship to the underlying demographic history (Bhatia et al. 2013). Restricting to common
genetic variation will focus the estimates on older alleles (see [8.2]) and the drift from that time
range. At the same time, excluding alleles that have fixed in the population, which are some of
the oldest drifting variants, will reduce the apparent drift populations and place a bound on the
estimated differentiation. We can see this phenomenon in the simulation results below for drift in
a population with constant Ne:

FST estimated in simulated drifted populations with SNP ascertainment.
Each panel shows FST estimates (y-axis) in a simulated population with Ne=10,000 and generations of drift

(x-axis). The light blue lines show the estimates from all variants and the dark blue lines show the
estimates restricting to common SNPs in the contemporary population. [code]

In both simulations thresholding on common variants eventually induces an upper bound on the
FST estimate. The magnitude of the bound was also dependent on the frequency distribution in
the ancestral population at that time: if variants in the ancestral population are common, they will
drift to fixation faster and the bias induced by common variant ascertainment will be more
substantial (right two panels versus left two panels). In particular, comparing common variants
across highly differentiated populations can produce very misleading results. For example, in the
simulations starting from common ancestral alleles (right panels) FST hits an asymptote at ~10,000
generations and does not increase substantially even after 100,000 or 1M generations. In other
words, the FSTestimate is specific to the variants it is being estimated from.While an out-group
population can sometimes be used to select the SNPs to mitigate some of this effect (Bhatia et al.
2013), out-groups without historic admixture or migration are rarely available.

https://paperpile.com/c/UwWSe8/1TFCY
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A second, more underappreciated, aspect of FST is that it is bounded by the frequency of the
most common allele in the total population. See (Jakobsson, Edge, and Rosenberg 2013) for
general derivation, (Edge and Rosenberg 2014) for tighter bounds when the number of alleles is
known, and (Alcala and Rosenberg 2022) for derivation in multiple populations. Moreover, the
bound decreases (i.e. becomes more constrained) as the most common allele becomes more
common. FST estimates from common variants (for which the most common allele is of moderate
frequency) will thus have a higher bound than FST estimates from rare variants (where the most
common allele can be of very high frequency). In the figure below, the bound is shown for
Hudson and Nei FST (the latter derived in the work cited above), both of which decrease with the
highest allele frequency. This can lead to confusing interpretations when comparing FST values
estimated from classes of variants with different bounds.

Bounds and behavior of FST estimators for two populations as a function of allele frequency.
Upper FST bound as a function of the most common allele frequency for a biallelic polymorphism for the
Hudson (solid) and Nei (dashed) estimators. The bound was estimated by sampling and smoothing, see

analytical derivation in (Jakobsson, Edge, and Rosenberg 2013). [code]

More than two populations

The relationship between frequency and FST bound is more complicated for multiple populations,
such as when comparisons are made across multiple species groups. Specifically, (Alcala and
Rosenberg 2022) showed that when multiple subpopulations are considered, the upper bound
on FST can be much higher than for two populations, and exhibits a non-linear relationship with
the frequency of the most common allele (see figure below). These substantial differences in FST

bounds can produce paradoxical results, such as higher values within six chimpanzee
subpopulations (FST=0.16) than between humans and chimpanzees (FST=0.10). (Alcala and
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Rosenberg 2022) demonstrated in real data that this difference was largely eliminated when
normalizing by the expected maximum FST in each comparison, which produced higher values of
differentiation between humans and chimpanzees – consistent with intuition. Thus, FST is also
specific to the populations, number of populations, and number of alleles it is computed in.

Theoretical and empirical FST bounds are much higher within chimpanzees than between
chimpanzee/human analyses.

(a) For two populations, the theoretical FST bound as a function of the most common allele (M) is shown
with black line and the empirical FST estimates for humans versus chimpanzees is shown in the heatmap,

with the mean shown in red. (b) Same as (a) but for six chimpanzee subpopulations. (c) Raw and
normalized estimates show normalization substantially increases the FST/Fmax in the human/chimpanzee

comparison.
Figure from (Alcala and Rosenberg 2022).

8.7 | Complex trait differentiation / Qst

Most common traits are highly polygenic (see [4.1]), and so it is of interest to understand how
much the genetic component of a polygenic trait can differ between populations or groups simply
through the process of neutral drift. This question was investigated in (Edge and Rosenberg
2015a) under a restricted haploid model and then in (Edge and Rosenberg 2015b) for arbitrary
ploidy and allele frequencies. Population differentiation for a quantitative trait has previously
been proposed under an analog of FST called QST (see (Michael C. Whitlock 2008) for review).
Surprisingly, Edge and Rosenberg find that, with respect to group means, a polygenic
quantitative trait behaves just like a single drifting polymorphism! Using derivations based on a
neutral model in a homogenous environment they prove that:

1. The difference in the trait mean across groups is centered at zero and symmetric (as
expected from neutral drift).

2. The variability in the group mean difference does not depend on the number of variants
contributing to the trait (i.e. polygenicity).

3. As a consequence, “the proportion of heritable variance in the trait attributable to genetic
differences between the populations” (QST) is approximately equal to the cross-population
(Hudson) FST (which (Edge and Rosenberg 2015b) rederive as FST,l). This quantity also does
not depend on polygenicity.
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Putting this together, for a neutral trait under homogeneous environments, the variance in total
phenotype that can be explained by genetic differences across populations is the product of the
average Hudson FST (i.e. the genetic variance due to “between population” differences) and
the trait heritability (i.e. the trait variance explained by genetic variance). And this relationship
will hold regardless of the level of polygenicity in the trait! Note: the relationship is sometimes
reported as 2*FST*h2, but this is only an approximation for Nei’s FST: Nei’s FST is approximately
equal to half of Hudson’s FST when the former is close to 0 or 1 (see [8.6]). In real data, Hudson’s
FST is often empirically lower than Nei’s FST (see [TBD]) due to the complexities of real population
dynamics, and so this approximation can be a substantial overestimate.

We can confirm the relationship between FST and population-explained trait variance in
simulations (see figure below). Specifically, we simulate two drifted populations (Ne = 10,000) with
polygenic heritable phenotypes (h2 = 10%) under a common environment. Then we compute the
squared correlation between the phenotype and the population label (i.e. the variance explained).
As expected, the variance in trait that can be explained by population differences is bounded by
the product of h2 and Hudson’s FST, and does not depend on polygenicity (tested using 100 and
1000 causal variants). Note this relationship continues to hold for substantially differentiated
populations even as alleles drift to fixation.

Proportion of trait variance explained by population differences in simulations.
(a) For two drifted populations, the cross-population FST (green/orange) and the variance in the trait

explained by the population label (blue) as a function of number of generations from the common ancestor
population; (b) the expected (x-axis) and observed (y-axis) variance in trait explained by population
differences (95% confidence interval shown with shading). (c,d) repeat the previous panels but for a

simulation with 1,000 causal variants. All simulations are for Ne=10,000; h2=0.10; n=500 in each of two
populations; averaged over 1,000 runs. Note the relationship between FST and generations of drift is
approximate and will depend on the ancestral allele frequencies. Variance explained for FST of ~0.15 is
labeled (comparable to estimates between individuals with European and African ancestry). Nei’s FST is

included for comparison. [code]

Since pairs of modern human populations generally have FST values <20% (meaning <20% of the
total variation at a typical SNP is due to between-population differences), we should generally
expect the amount of genetic variation attributable to population labels to be very small. For the
typical common trait with h2g=0.10 (see [4.1]) and continental FST=0.15 (as estimated in populations
with primarily European/African ancestry, for example) we would thus expect <1.5% of the total
trait variance to be explained by continental genetic differences (confirmed in simulations
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above); whereas for a trait like Educational Attainment, with common direct h2g=0.04 (see [5.3]),
we would expect <0.6% explained by continental genetic differences.

Finally, it is worth recalling that under neutrality (1) the mean difference is expected to go in either
direction and (2) differences in genetic values alone are not sufficient to characterize overall
phenotypic differences. Any trait-influencing environment (and any gene-environment interaction)
likely differs across groups and can thus exacerbate or eliminate whatever differences in genetic
means exist (see [1.1] for illustrative examples).

8.8 | Polygenic selection

While most of the above derivations were concerned with either locus-specific selection or
neutral drift, a more plausible mechanism for selection on complex traits is polygenic selection:
wherein selection acts on a polygenic trait as a whole, which percolates into weak selection on
individual genetic variants in proportion to their effect on the trait. Since most common traits are
driven by tens or hundreds of thousands of variants (see [4.1]), polygenic selection could explain
how humans have adapted to changing environments while exhibiting weak or nearly neutral
locus-specific selection effects. This is sometimes also conceptualized as redundancy: very many
variants can influence the trait optimum through parallel channels and so no one variant is under
strong selection (see (Barghi, Hermisson, and Schlötterer 2020) for a review/perspective of
polygenic adaptation and redundancy).

Impact on frequency

Polygenic selection shapes the overall relationship between causal variants and their allele
frequency (and, as a consequence, their contribution to heritability). By simply applying the above
recursive drift/selection models to multiple variants we can see how the allele frequency
spectrum changes over the course of multiple generations:

Common causal variant frequency shifts under different models of selection.
Simulations with 5,000 causal variants, Ne=10,000, s=0.0007, and only common variants (MAF>1%) are
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shown. [code]

● Under neutrality, causal variants are distributed through the entire frequency spectrum
and there is no relationship between allelic effect size and frequency. Note: even though
the allelic effect is unrelated to frequency, rarer genetic variants have less genetic
variance and will thus still contribute less to the total heritability of the trait.

● Under directional selection, alleles with fitness decreasing effects are driven to lower
frequency and eventually out of the population.

● Under stabilizing selection, heterozygosity is selected against, driving variants to
frequency extremes (purging of fixing) similar to directional selection (see [8.3]). Over
time, only weak/null effect alleles will remain at medium frequencies and thus common
variants will explain little of the trait variance. Note: these are dynamics at the fitness
optimum, see below for shifts in the optimum.

Mutational target size

While the process of selection is generally expected to eliminate genetic variation (except for
disruptive selection) it is countered by the introduction of new genetic variation through
mutations leading to turnover in the genetic variants that contribute to traits and fitness. This
turnover is the reason we continue to see any genetic variation in the population at all, and many
theories have been derived as to potential balance in mutation, selection, and drift in maintaining
genetic variation over extended periods of time (which we mostly ignore here as our focus is on
relatively short time-scales). Modeling how this process may shape polygenic selection itself
requires an additional parameter known as the mutational target size (L): the fraction of the

https://github.com/gusevlab/hsq_ancestry_examples/blob/main/polygenic_selection_simulation.R


genome that, if altered, would influence the trait under selection (or, alternatively, the probability
that a new mutation will influence the trait). This is a particularly difficult parameter to quantify and
validate, with a ballpark estimate of 0.15–1.5 Mb (see (Sella and Barton 2019) for a comprehensive
review). The relationship between selection coefficients (s), heritability (h2), and mutational target
size (L) is concisely summarized in the figure below from (Simons et al. 2022) in the context of
variants identified in a Genome-Wide Association Study (i.e. variants that have detectable effects
on a trait and reach statistical significance): Higher s drives causal variants to have lower
frequency; higher h2/L drives variants to have larger effects (and be more detectable at a fixed
sample size); higher L (at a fixed h2/L) increases the overall h2 and the total number of variants
identified.

Expected impact of key parameters on the distribution of significant GWAS effects.
Association statistics (Z-scores) as a function minor allele frequency (MAF) are shown for: (A) different
selection parameters; (B) different heritability-per-site parameters; (C) different mutational target sizes.

Figure modified from (Simons et al. 2022).

Response to shifts in the optimum / polygenic adaptation

When a polygenic fitness optimum shifts (such in response to an environmental change),
selection leads to changes in the trajectories of genetic variation, known as polygenic
adaptation. Under stabilizing selection, this adaptive process is particularly complex and
operates in two phases. In the first phase, genetic variation that moves the trait towards the
optimum is strongly selected for and increases in frequency akin to directional selection. In the
second phase, once the fitness optimum is reached, moderate frequency genetic variation drifts
while high-frequency alleles are fixed in the population and low-frequency alleles are purged. In
very large populations, the period of drift may last longer and be treated as second intermediate
phase, as shown in the illustration below from (Barghi, Hermisson, and Schlötterer 2020):

Three phase model of stabilizing selection under polygenic adaptation.
First, directional selection to move to the fitness optimum. Second, drift (depending on the population Ne)
randomly distributes the alleles. Third, a gradual process where alleles of sufficiently high/low frequency

move to fixation or elimination. Figure from (Barghi, Hermisson, and Schlötterer 2020).
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The specific allelic trajectories under stabilizing selection were modeled in (Hayward and Sella
2022). They further observe that the first, directional-like phase is rapid and deterministic: alleles
that are aligned with the optimum will slightly increase in frequency and alleles that oppose the
optimum will slightly decrease in frequency in proportion to their effect on the fitness trait.
Whereas the second, equilibrium phase is long and stochastic: which specific alleles are fixed or
disappear is a process driven by their (mostly arbitrary) starting frequency and the randomness of
drift. Even large-effect, fitness-aligned alleles that were unlucky not to have reached moderate
frequency by the end of the rapid phase are then expected to be eliminated by stabilizing
selection in the equilibrium phase (Sella and Barton 2019; Hayward and Sella 2022). (Hayward
and Sella 2022) summarize the consequences as follows: “the alleles that fix are a largely
random draw from the vastly greater number of alleles that affect the trait, both in the sense of
being those that happened to segregate at high MAFs at the onset of selection and because of
the stochasticity of fixation. Thus, in this plausible scenario, it becomes meaningless to say that
any given fixation was adaptive, and arguably uninteresting to focus on the particular subset of
alleles that happened to reach fixation”. In other words, while stabilizing selection in response
to a fitness shift can substantially change the allelic distribution, it does so over a very long
period of time and in arbitrary ways with respect to the biological function of the alleles.

Model-based expectations for the deterministic and stochastic phases in response to a fitness shift.
The trajectory of fitness-aligned (green) and -opposing (blue) alleles is shown over time (x-axis, log scale).
Vertical line shows the point at which the trait mean has reached the fitness optimum in the population.

Figure from (Hayward and Sella 2022)
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Stabilizing selection across groups

The stochastic “turnover” of mutations under stabilizing selection has important and unexpected
implications for comparisons of genetic components across groups, as investigated in (Yair and
Coop 2022). For a polygenic trait under stabilizing selection with the same fitness optimum in
both groups: (1) the genetic value of the trait will vary less relative to a trait under neutral drift (i.e.
selection “stabilizes” the genetic mean and QST < FST; see panel [a] in the figure below); (2) genetic
variation from an ancestral population (or from the comparison group) will explain less variance in
the trait than expected under neutral drift, as it is selected out and replaced by new variation (see
panel [b] in the figure below). These two forces lead to seemingly paradoxical scenarios where
the difference in mean genetic value between populations is more similar than expected from FST

and neutral drift (see [8.7]) but many individual trait-influencing polymorphisms are more different
than expected between the populations (and, as a consequence, as are polygenic scores).
Notably, tests for excess FST (or similar measures of genetic differentiation) at trait-causing loci
may thus appear to be significant even when the fitness optimum and genetic mean does not
differ between populations.

Group differences due to stabilizing selection on a shared fitness optimum.
(a) Stabilizing selection reduces the variance in the mean phenotype with respect to the ancestral
population, relative to neutral drift. (b) At the same time, stabilizing selection increases the genetic

differences across populations (proportion of variance in one population not explained by variants in the

other). Figures from (Yair and Coop 2022).
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Same adaptive evolution, different optimum

It is useful to keep in mind that polygenic stabilizing selection acts to keep the entire trait at the
fitness optimum. Since the trait consists of both a genetic and environmental component (as well
as interactions between the two), this implies that the same apparent genetic adaptation can be
the consequence of either a fitness shift or an environmental shift (see (Harpak and Przeworski
2021) for a detailed presentation of this phenomenon). As illustrated in the figure below, an
identical genetic response to selection can occur whether the fitness optimum changes and the
environment stays the same, or the environment changes and the fitness optimum stays the
same.

Toy examples of identical genetic adaptation for different environmental contexts.
For a simulated trait that is 50% heritable, the genetic component is shown in the positive range and the
environmental component is shown in the negative range. (left) A population at baseline where the fitness
optimum (dot) is at zero and both the genetic component and the environmental component are centered

at the optimum. (middle) A shift in the fitness optimum but not the environment leads the genetic
component to adapt to a higher optimum value. (right) A shift in the environmental component but not the
fitness optimum leads the genetic component to adapt to the same higher optimum value. The first and
third populations have the same fitness optimum but different genetic values. The second and third

populations have the same genetic value but different fitness optimum. Figure modeled after (Harpak and
Przeworski 2021). [code]

For example, a population with a nutrient rich environment could adapt to a different mean
genetic value for body weight than a population with fewer nutrients even though the fitness
optimum and mean body weight remain exactly the same. Likewise, a population where the
fitness optimum shifted up so that higher weight lead to more births (for, say, cultural reasons)
would exhibit the same adaptation as a population where the environment shifted down to
reduce body weight (e.g. lower nutrition) and the fitness optimum stayed the same, with genetics
then compensating for the environmental shift. As argued in (Harpak and Przeworski 2021), this
lack of identifiability highlights a broader challenge in defining genetic, environmental, and
fitness components in isolation. Such definitions are further complicated by the fact that
selection likely acts pleiotropically on a latent fitness phenotype that is unobserved and
genetically correlated to many observed phenotypes, which then interact with the environment
(Barghi, Hermisson, and Schlötterer 2020; Simons et al. 2022).
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8.9 | The Breeder’s Equation and heritability (revisited)

To close this section, we’ll link these new concepts around selection to the concepts around
heritability that were discussed previously through the lens of a traditional definition of heritability
from studies of agricultural and animal breeding.

Theory

A widely used parameterization of heritability is the Breeder’s Equation, which relates (narrow
sense) heritability to the expected change in phenotype after selective breeding in a controlled
environment. Specifically, given a population with a normally distributed phenotype, if one selects
a subpopulation with a mean phenotypic difference S (the selection differential, formally defined
as the mean phenotype in the selected population minus the mean phenotype in a hypothetical
unselected population), then the expected phenotypic change (or response) R in the next
generation in a controlled environment can be modeled as:

For example, if we select individuals with a trait mean of 8 from a population with a mean of 5 and
h2 = 0.5, then S = 8 - 5 = 3, R = 0.5 * 3 = 1.5, and the expected phenotype in the offspring after
selection is 5 + 1.5 = 6.5. Whereas if h2 = 0, then the same selection will result in a response of
zero (i.e. no change in trait mean). We can see how this definition of [h2] differs substantially from
earlier definitions of [h2g] (see [1.1]): h2 is defined in terms of a causal action (breeding) on a
prospective phenotype in a controlled environment and is agnostic to the genetic mechanisms;
h2g is defined in terms of correlation of specific genetic particles with a retrospective phenotype
in its retrospective environment. Notably, indirect effects (see [3.0]) do not contribute to the
selective response and, since the environment is assumed to be fixed, and therefore should not
contribute to h2 defined this way.

While the Breeder’s equation accurately predicts the response to a single generation of selection,
the dynamics get more complicated when predicting the long term response to selection.
Selection on a heritable trait restricts the additive genetic variation acting on that trait by (a)
moving alleles to fixation (as we saw above) and (b) drawing previously unlinked variants into
negative disequilibrium – a collider bias-like phenomenon known as the Bulmer effect (Bulmer
1971). At the same time, competition of causal effects across linked variants can reduce the
impact of selection, known as Hill-Robertson interference (Felsenstein 1974). In the absence of
new genetic variation the overall reduction in genetic variance leads to a decrease in h2 and, as
a consequence, a weaker response to selection (still accurately predicted by the Breeder’s
equation given the new h2 in each generation). Thus, even under controlled breeding with fixed
environments, knowing h2 alone is not sufficient to model longer term trends in the phenotype.
The long-term response to selection also depends on the population and trait architecture
including:

● effective population size, which defines the strength of drift

https://paperpile.com/c/UwWSe8/iGNAJ
https://paperpile.com/c/UwWSe8/iGNAJ
https://paperpile.com/c/UwWSe8/luAbJ


● frequency, correlation/LD, and effect distribution of causal variants in the starting
generation

● recombination rate, which degrades Hill-Robertson interference and the Bulmer effect
● mutation rate, which introduces new genetic variation
● mutational target size, which defines how new mutations influence the trait

Quantifications of the expected cumulative response to selection have been developed under
the infinitesimal model (without frequency changes) (Bulmer 1974), under a drift model (without
linkage; the Robertson model) (Robertson 1960) and under both (Hill and Robertson 1966).

A simple simulation illustrating these concepts is shown in the figure below. We can see the
phenotypic response to long term selection over 10 generations for traits with different h2 and
number of causal variants. In each generation, individuals in the top 25% of trait values were
selected (blue dots) and then randomly mated to generate the next generation (light blue arrow,
with h2 determining how similar the offspring phenotype is to the selected parents). The
expectation from the Breeder’s Equation is shown in gray and matches the observed phenotypic
mean after selection. The true h2 (used in the Breeder’s Equation) is shown to the right of each
panel and in all instances it decreases over time. We can see that for a trait with 10 causal
variants the h2 drops precipitously and the response to selection plateaus, whereas for a trait
with 1000 causal variants the h2 drops very slowly and the response is nearly constant in each
generation (because it takes longer for this many variants to reach fixation). After selection is
stopped in the 10th generation, the phenotype and heritability remains relatively constant. This is
a simplified simulation with an effectively infinite recombination rate and so these numbers are
only illustrative, but the general expectation is that higher polygenicity leads to a more sustained
selection response.

The long-term response to selection for simulations of four disease architectures.
Each panel shows the phenotype mean (y-axis) versus generations of selective breeding (x-axis) with the
selected individuals in blue and the subsequent generation of offspring in black (connected with a light
blue arrow). The gray line shows the expectation from the Breeder’s Equation in each generation. [  code]
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Consistent response to controlled selection

In controlled settings, the response to selection can be strikingly reliable for many generations. A
canonical example is the Illinois long term selection experiment, where maize kernels were
selected for oil concentration, which has been running for over 100 generations (Laurie et al.
2004). In each generation, truncating selection was imposed to select the top or bottom 20%
ears of corn based on oil (and separately protein) concentration. Through many generations of
selection, the oil concentration was increased from 5% to >20% for the high-oil (IHO) and to <1%
for the low-oil (ILO) strains, with only the ILO hitting the limits of selection and discontinued in the
89th generation. The sustained response is remarkable, and consistent with a highly polygenic
architecture. Given the low effective population size (estimated Ne of just 10), quantitative
analyses further suggest a substantial contribution to fitness from new genetic variation through
mutations (Walsh 2010).

Grain oil concentration in response to selection in maize.
IHO/ILO are two strains that have been selected for high oil concentration whereas IHP/ILP were drawn
from the same source population but are not selected and only experience random drift. Other colors

represent strains where selection was reversed. Figure from [Moose Lab].
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Inconsistent response to natural selection

[🔥I am a human geneticist and this is only a cursory survey of findings from animal genetics]

  In contrast to the highly consistent response to controlled selection, natural selection often
produces negligible or even opposite results, sometimes referred to as a “stasis paradox”
(Bonnet et al. 2017). (Walsh and Lynch 2018) highlight a number of instances in natural animal
populations where sustained selection on a heritable trait exhibited a paradoxical response,
which are transcribed below.

Examples of natural populations failing to respond to selection.
The organism, heritability (h2), selection intensity (i: the selection differential S scaled by the phenotypic

variance), duration, and response are listed.
Transcribed with minor corrections from Table 20.3 of (Walsh and Lynch 2018)

Reference Species Species / Trait h2 Intensity (i)
Duration
(years)

Response

Kruuk et al. (2000, 2002) Red Deer Antler mass 0.33 0.44 29 Opposite

Kruuk et al. (2000, 2002) Red Deer Birth Mass (male) 0.11 0.40 29 None

Kruuk et al. (2000, 2002) Red Deer Birth Mass (female) 0.25 0.22 29 None

Milner et al. (1999, 2000) Soay Sheep Body mass (Male) 0.12 0.11 12 None

Milner et al. (1999, 2000) Soay Sheep Body mass (Female) 0.24 0.07 12 None

Bonnet et al. (2017) Snow Vole Body Mass 0.17 0.21 10 Opposite

Larsson et al. (1998) Barnacle Goose Tarsus length (male) 0.53 0.03 13 Opposite

Larsson et al. (1998) Barnacle Goose Tarsus length (female) 0.53 0.09 13 Opposite
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Reference Species Species / Trait h2 Intensity (i)
Duration
(years)

Response

Cooke et al. (1990) Snow Goose Clutch size 0.20 0.30 20 Opposite

Merilä ̈et al. (2001a, 2001b) Collared flycatcher Relative mass 0.30 0.23 17 Opposite

Alatalo et al. (1990) Collared flycatcher Tarsus length 0.52 0.12 4 None

Kruuk et al. (2001) Collared flycatcher Tarsus length 0.35 0.18 17 None

Sheldon et al. (2003) Collared flycatcher Breeding time 0.19 0.22 19 None

Charmantier et al. (2004) Blue tit Body mass 0.27 0.31 14 None

Charmantier et al. (2004) Blue tit Body mass 0.35 0.42 12 None

Charmantier et al. (2004) Blue tit Tarsus length 0.47 0.27 13 None

Charmantier et al. (2004) Blue tit Tarsus length 0.48 0.21 12 None

Gienapp et al. (2006) Great tit Breeding time 0.17 0.21 30 None

Horak et al. (1997) Great tit Egg size 0.80 0.38 7 None

Garant et al. (2004) Great tit Fledging mass 0.24 0.21 36 Opposite

Garant et al. (2005) Great tit Fledging mass 0.20 0.14 36 Opposite

Garant et al. (2005) Great tit Fledging mass 0.29 0.18 36 None

A brief review of these studies highlights many possible explanations for the failure of the
selection response, often echoing many of the caveats discussed in this section on selection and
prior sections on heritability. While the instances of no selective response may be indicative of
widespread stabilizing selection (though it has been difficult to quantify empirically), the negative
response is likely an indication of more complex, environmentally driven confounding. These
studies thus provide tangible and compelling examples of the difficulty in accurately
estimating and understanding the mechanisms of heritability and selection, even in seemingly
simple populations of mammals and birds. As the specific cases are often interesting in their own
right, I have quoted some representative examples:

Bias in heritability estimates and indirect genetic effects.

● (Charmantier et al. 2004): “Our analyses show large common environment effects, which
may be due in part to maternal effects. These maternal effects may in part be due to the
mother's genotype, i.e. indirect genetic effects. Such effects can alter the response to
selection, and may constrain or even reverse an evolutionary response, depending on
the sign of the covariance between the direct and the indirect genetic effects and the
respective selection pressures”

Confounding from selection on an unmeasured trait and/or environmental correlations.

● (E. B. Kruuk et al. 2002): “The results were however in agreement with all the predictions
from the environmental covariance explanation for a lack of response to selection. Under
this scenario, breeding success would have been determined by an unmeasured trait
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such as body condition or nutritional state, which was phenotypically correlated with
antler mass but for which there was no genetic correlation with antler growth. Increased
breeding success would then be associated with increased antler mass, but only
because of the environmental covariance between fitness and the trait, generating
misleading expectations of evolution in antler size because the true target of selection
has not been correctly identified”

Changes in the environment masking or confounding the action of selection.

● (Bonnet et al. 2017): “Inferred birth dates revealed that snow fallen during the preceding
winter is a major ecological factor constraining the onset of reproduction in the spring …
This suggests that the shortening of the snow-free season, and thereby selection for
lower predicted adult mass, is a novel phenomenon that the population is currently in the
process of adapting to.”

● (Merilä, Kruuk, and Sheldon 2001): “The estimated microevolutionary change has
presumably been concealed by an increasingly negative influence of environmental
conditions on the condition index … A plausible agent explaining this deterioration is the
large-scale climatic trend that has reduced the caterpillar food supply—the main food of
growing nestlings—over the last few decades.”

● (Garant et al. 2004): “By combining information about changes in both population
breeding density and the early spring temperature over time, we were able to show that
the combined action of these two processes can explain a large proportion of the
difference between the phenotypic and genotypic responses in this population.”

● (Larsson et al. 1998): “We conclude that the most likely ultimate explanation for the
body-size decline in the main study colony is that a density-dependent process, which
mainly was in effect during the very early phase of colony growth, negatively affected
juvenile growth and final size. The decline in body size of breeding birds observed in the
main colony during our study period was most likely a lagged response to this
density-dependent process, that is, smaller locally born birds recruited successively to
the breeding population when two to four years old. As a possible density-dependent
mechanism we propose that brood-rearing families in very young and small colonies may
have access to some highly nutritious but relatively rare food plants, which, when colony
size increase only will constitute a minor proportion of the diet of growing individuals”

Notably, a recent large-scale meta analysis quantified a substantial additive genetic variance on
fitness itself (VA(w) = 0.19), which contrasted with a much lower heritability of fitness (h2(w) = 0.03),
suggesting that a large absolute capacity to respond to selection is systematically compensated
for by large-scale environmental variability (Bonnet et al. 2022). (Walsh and Lynch 2018) further
summarize these and other potential explanations for stasis in the selection response,
transcribed in the table below (and see similar discussion in (Hansen, Pélabon, and Houle 2011;
Pujol et al. 2018)).
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Potential reasons for failure to observe a response to selection
Transcribed from Table 20.4 of (Walsh and Lynch 2018)

Genetic response has occurred, but was not detected.
● Low power to detect a genetic trend.
● Genetic gain countered by environmental deterioration.

The focal trait is not the target of selection.
● Trait and fitness are correlated through an environmental variable.
● Selection on a phenotypically, but not genetically, correlated trait.

Consequence of open population structure.
● Immigration from populations outside of the study area.

Consequence of fluctuating environmental conditions.
● Fluctuating selection differential, with little net selection.
● Fluctuating h2, with smallest h2 when selection is strongest.

Constraints and tradeoffs.
● Direct response on a trait countered by correlated responses from other traits.
● Measured fitness component is an incomplete measure of total fitness.

The debate over the “missing response” (Pujol et al. 2018) in studies of animal evolution has
some parallels to the debate over “missing heritability” (Manolio et al. 2009) in human genetics. If
we shuffle the terms around and redefine [h2 = R/S], then the table above with [R] exhibiting zero
or negative values can be interpreted as a kind of “missing” heritability: pedigree/model-based
estimates of heritability being substantially inflated relative to causal observations in the full
population. In both cases, population genetics methods with strong assumptions on
environmental partitioning were applied to dynamic populations and produced paradoxical
results. In some cases, careful molecular and environmental modeling enabled the identification
of environmental confounders or interactions that had not been considered. In thinking about
the heritability of human traits, it is worth considering whether we expect humans to function
more like maize/cattle in a controlled breeding experiment or like natural animal populations
in the wild.

8.10 | Further reading

Basic parameters:

● (Waples 2022): Review of effective population size (Ne)
● (Slatkin and Rannala 2000): Review of allele age
● (Bhatia et al. 2013): Review of FST and recommendations for estimating it.
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● (Edge and Rosenberg 2015b): Derives the relationship between FST and trait differences
for polygenic traits (QST).

Selection:

● (Sella and Barton 2019): Comprehensive review of stabilizing selection and implications
for human genetics.

● (Koch and Sunyaev 2021): Concise review of stabilizing selection primarily focusing on
polygenic traits.

Heritability/selection in non-human animals:

● (Hansen, Pélabon, and Houle 2011): Perspective on the relationship between heritability
and evolvability of traits.

● (Pujol et al. 2018): Perspective on the (lack of) relationship between heritability and
response to selection in animal populations.

● (Bonnet et al. 2022): Large-scale meta-analysis of the genetic variance and heritability of
fitness in animals.


Concepts: race and genetic

ancestry

9.0 | Summary

● Race and genetic ancestry are distinct concepts with distinct causes and
consequences. Race is defined within a social context. Genetic ancestry is defined within
the context of reference populations.

● Race, either a historical “essentialist” views or a more contemporary “population” views,
provides a poor model of true genetic variation. Genetic variation follows a “nested
subset” model where the most variation is observed in Africa and subsets of that variation
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are observed in Europe, Asia, and the Americas. Model fitting of race to genetic data
provides a much worse fit than a nested subset model that is incompatible with race
(Long, Li, and Healy 2009).

● Comparing pairs of sequenced individuals, the largest number of differing sites were
within Africa (consistent with a nested evolutionary model): a pair of Yoruba/Yoruba
individuals have more differences than a pair of Yoruba/French individuals (Biddanda,
Rice, and Novembre 2020). Most of the differences between pairs of individuals were
because one individual carried a globally common allele and the other did not.

● Estimates of FST between divergent geographic populations range between 0.11 and 0.15
(Bhatia et al. 2013), in other words, if we take the individual-level genetic variation at a
typical polymorphism and condition out population labels, we will still be left with 85%
of the original variance. This is in stark contrast to historic racial models that assumed
racial groups were largely homozygous within populations and highly divergent between
(i.e. FST close to 1.0).

● A brief tour of methods for analyzing population structure in genetic data:
a. Principal Components Analysis (PCA), an eigendecomposition of the sample

relatedness matrix, can identify individuals drawn from populations with differing
allele frequencies. Theory indicates that PCA is extremely sensitive and is
expected to identify structure in most large datasets (Patterson, Price, and Reich
2006). While PCA has useful genealogical properties, it is easily distorted by the
sampling of individuals (McVean 2009) and can also produce arbitrary
non-linearities in the presence of spatially local structure (Novembre and Stephens
2008).

b. Model-based clustering (STRUCTURE) attempts to identify individuals as mixtures
of alleles from a fixed set of populations (Pritchard, Stephens, and Donnelly 2000).
STRUCTURE is similarly distorted by the sampling of individuals, as well as the
number of defined populations, including identifying admixtures that do not exist
in truth or missing admixtures that do exist (Lawson, van Dorp, and Falush 2018).

c. Parametric models (Admixture Graphs) attempt to fit populations to trees or graphs
based on tests of cross-population allele sharing. Admixture graphs can often
identify incorrect graphs that provide a better fit to the data than the true
graph, or many equally likely graphs. Reanalysis of published admixture graph
studies demonstrated several instances where historical conclusions were drawn
from data that was compatible with many different graphs (Maier et al. 2023).

d. All ancestry inference methods are biased by the sampling process and/or
model parameters, and no method can identify “true” ancestry because the
true sampling process is unknown.

● A brief tour of genetic ancestry in large-scale datasets:
a. All large biobanks exhibit continuous population structure that is poorly

explained by conventional racial groups (Wojcik et al. 2019).
b. When restricting to “homogenous” ancestry populations enriched for European

origin, continuous PCs are observed that reflect ancestry from reference
populations within Europe (Galinsky et al. 2016). When restricting to homogenous
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white individuals in a single European country (the UK), county level PCs are
observed (Agrawal et al. 2020).

c. The same patterns arise in other countries: A large Chinese biobank identified
PCs that correlated with within-city neighborhoods (Walters et al. 2023); a large
Japanese biobank identified PCs that correlated with dozens of local regions
(Sakaue et al. 2020).

● A brief tour of human history from population genetics:
a. Diverse studies of modern and ancient DNA have demonstrated that historic

admixtures and migrations were ubiquitous and highly dynamic. Genetic ancestry
rarely reflects current geographic patterns and disputes simple models of
isolated human development (Pickrell and Reich 2014).

b. Modern individuals from the Americas are generally more similar in their ancestry
to European than to Native American reference individuals (Moreno-Estrada et al.
2013; Gravel et al. 2013). Native American reference individuals exhibit complex
relationships to ancient Siberian genomes as well as modern Polynesian
populations (Ioannidis et al. 2020), where the latter appear to have been settled
directly by East Asian groups (Skoglund et al. 2016).

c. European individuals derive ancestry from historic populations that often no
longer exist in un-admixed form (Lazaridis et al. 2014; Sikora et al. 2019) or were
rapidly displaced (Olalde et al. 2018). In more recent history (the Bronze Age) both
extensive migration and population structure have been observed across Europe
(Antonio et al. 2024).

d. Admixture and migration is extensive in Africa in both modern (Fan et al. 2023)
and ancient data (Skoglund et al. 2017; Lipson et al. 2020). Yet there are massive
gaps in our understanding of African population history including competing
theories of continuously mixing pan-African “metapopulations” (Scerri, Chikhi, and
Thomas 2019; Ragsdale et al. 2023) versus recent “back to Africa” migrations
(Cole et al. 2020).

● In short, human history has been highly dynamic, with extensive admixture, instances of
rapid migration, geographic shifts, ancient introgression events, historic populations that
no longer exist in unadmixed forms. Conventional models of race are irrelevant to the
study of genetic variation, and even models of simple population relationships are
proving to be fundamentally wrong.

9.1 | Definitions and conceptual models of race

Race is the social categorization of individuals into groups based on perceived (typically physical)
traits. It can be further subdivided into (a) self-identified race and (b) race as perceived by others
(naturally these two concepts also interact: people who are told they are a given race will start to
perceive themselves as that race). As it is a social construct, race is estimated through
self-reporting; there are no “biomarkers” or “diagnostics” for race. Race is often correlated with
physical features (e.g. pigment) and, by proxy, with their genetic underpinnings (e.g. pigmentation
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genes). A common rhetorical trick is to conflate correlation with race as biological causation:
certain race constructs are correlated with darker/lighter skin, but neither self-identifying as a
different race nor being perceived as a different race causally changes one’s skin color or other
biology. At the same time, as with any social construct, race can be causal for social/cultural
outcomes: race perceived by others can be causal for discrimination, self-identified race can be
causal for certain cultural preferences, etc. There is no contradiction between race being causal
for social outcomes but not causal for biology, since society and biology are distinct.

Genetic ancestry is a quantification of genetic material inherited most recently from a given
reference population (typically using contemporary populations as a proxy). Genetic ancestry is
thus a relative quantity, as all individuals eventually derive ancestry from the same ancestral
populations. Genetic ancestry can be causal for certain traits: for example when certain
populations carry pigment alleles at higher frequencies, genetic ancestry – the transmission of
those alleles – will have a causal effect on their skin color. Genetic ancestry can thus be
correlated with race through its causal effect on observable traits.

Schematic of the relationships between race, genetic ancestry, and outcomes

A testament to the broad acceptance of race as a social construct that is distinct from ancestry is
that even fringe racists have started conflating race and ancestry: proposing concepts such as
“genetic race” or referring to individuals as “genetically black/white”. Since we are interested in
distinguishing causes from correlations, we should reject this obfuscation and use clear
language. Moreover, race and ancestry are distinct not only in the way they are constructed but
also in the way they model the world:

Different conceptual models of race fail to reflect genetic diversity.
(A) The “essentialist” concept of race where humans are partitioned into distinct groups based on physical
appearance; (B) the “population” concept of race where humans are partitioned into semi-distinct clusters
of genetic ancestry; (C) the “nested subsets” model of genetic diversity; (D) “Euler diagram” of the overlap



between common variation in real genetic data from populations selected to be racially diverse, three of
which are labeled. Figures (A,B,C) from [Playing the Gene Card] and (D) from [Visualizing Human Genetic

Diversity].

The early “essentialist” models of race advocated for the partitioning of humans into
fundamentally distinct groups based on appearance, with some overlap at the margins to
acknowledge “mixed-race” individuals. These models operated under the assumption that human
races had undergone substantial divergent evolution and that most genetic variation had fixed to
different values between racial groups, leading to observable differences in skin and hair. More
contemporary population/ancestry based models of race continue to advocate for partitions
between “populations” of individuals but rather than base these partitions on hard physical
characteristics, they are based on softer genetic ancestry “clusters”. In truth humans spent most
of their evolutionary time in Africa, which included the accumulation of the vast majority of
common variation (see [8.3]), followed by multiple gradual and complex dispersals and
mixtures into other parts of the world. These dispersals involved population “bottlenecks” that
increased drift and thereby reduced the genetic variation in the subpopulations, yielding a
“nested subset” of populations where most genetic variation present outside of Africa is also
present inside of Africa (with non-African populations experiencing a small amount of additional
novel variation through admixture with archaic humans). Indeed, using real genetic data from
populations selected to be as geographically and racially diverse as possible we see that the
observed patterns of genetic variation closely match this nested subset model and have no
correspondence to either the essentialist or population-based concept of race (panel D above).
Even as an abstraction, race-based models do more to mislead than inform our understanding
of contemporary genetic diversity. A model of race that would even remotely correspond to
biological genetic diversity would need to be defined by nested subsets, serial bottlenecks, and
extensive recent admixture – in other words, it would be nothing like the conventional use of
race both historically and today.

9.2 | Race provides a poor fit to genetic variation

The biological validity of a conventional racial model was formally evaluated in (Long, Li, and
Healy 2009), using early targeted sequencing and structural variant data from global populations
(the title, “Human DNA Sequences: More Variation and Less Race” should give you a preview of

https://www.geneticsandsociety.org/reports-and-publications/playing-gene-card
https://james-kitchens.com/blog/visualizing-human-genetic-diversity
https://james-kitchens.com/blog/visualizing-human-genetic-diversity
https://paperpile.com/c/UwWSe8/9sdlG
https://paperpile.com/c/UwWSe8/9sdlG


their conclusions). The authors propose two models: (1) a race-like model where
African/Asian/European populations diverged from a common ancestor and evolved
independently and (2) a nested-subsets model where populations diverged via a phylogeny
(Note: these models are called “two-level island” and “expanded hierarchical” in the paper but
we’ll stick with the simpler prior terminology). The two models are visualized in phylogenies
below:

Genetic diversity does not fit a classical racial population model.
(a) A “race-like” model of populations with a total population (T), regional populations (R), and within
population (W) groups. Middle and right panels show the model fit to genetic data in terms of genetic

diversity (FST) and genetic distance (normalized FST). (b) Same but for a nested-subsets model with a seven
population phylogeny shown. Dots represent the expected values from each model. Figures recompiled

from (Long, Li, and Healy 2009).

These two models were evaluated for how well they fit the genetic distances found in real
biological sequencing data using FST-style statistics (with different normalizations). The race-like
model expects the greatest diversity between the higher-level “races” and then decreasing
diversity within the “races”. The race-like model fit the data very poorly: it overestimated the
amount of diversity between European and Asian populations and within the European/Asian
populations and subpopulations, and it underestimated the amount of diversity within the African
populations and subpopulations as well as between some African subpopulations and
European/Asian populations. In contrast, the nested subsets model accurately fit the high genetic
diversity in Africa and the decrease in genetic diversity as populations become more
geographically distant from Africa due to migrations and serial bottlenecks. The same patterns
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were observed when using a normalized “genetic distance” metric, which again fit poorly in the
race-like model (R2 = 0.38) while exhibiting a precise and linear relationship in the nested subsets
model (R2 = 0.94). The nested subsets model was not a perfect fit likely because it did not
additionally model admixture and more complex migration. As we will see, broader sampling in
general populations identifies a substantial amount of admixture and would thus fail the race-like
model even more severely.

Based on these tests, it is clear that a race-like model does not provide a meaningful
representation of the biological reality. (Long, Li, and Healy 2009) conclude that attempting to fit
a race-like model to evolutionary data can only lead to paradoxical conclusions:

“
The pattern of DNA sequence diversity also creates some unsettling problems for applying to
humans the definition of races as groups of populations within which the individuals are more
related to each other than they are to members of other such groups … A classification that
takes into account evolutionary relationships and the nested pattern of diversity would require
that Sub-Saharan Africans are not a race because the most exclusive group that includes all
Sub-Saharan African populations also includes every non-Sub-Saharan African population.
Moreover, the Out-of-Africa branch would place all Eurasians in the same race, but this would
necessitate placing Europeans and Asians in sub-races … We see no need for such a
classification in light of the fact that our evolutionary history gives good guidance for
understanding the structure of human diversity”

9.3 | Genetic ancestry

Having established that race is not useful as a measure of genetic diversity, what then do we see
with ancestry-based approaches? Much of the early population genetics analyses involved the
human “Haplotype Map” or HapMap project, a kind of global survey of genetic variation (which
eventually evolved into the 1000 Genomes Project with the advent of whole-genome
sequencing). The primary HapMap samples were: (1) White people from Utah (CEU); (2) Yoruba
people from Ibadan, Nigeria (YRI); Japanese people from Tokyo, Japan (JPT); and Han Chinese
people from Beijing, China (CHB). These core sites were selected to maximize racial and
geographic differences in an attempt to efficiently capture global variation: “we decided to
include several populations from different ancestral geographic locations to ensure that the
HapMap would include most of the common variation and some of the less common variation in
different populations.” (International HapMap Consortium 2003). As a consequence, analyses of
these data (which are very common and form the basis of fundamental reference panels) will
exaggerate the amount of global differentiation relative to representative sampling.

Variant-level differences

Perhaps the simplest quantification of population differences is to take two individuals and ask
how many positions of their genome are different. (Biddanda, Rice, and Novembre 2020) carried
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out such an analysis across core/continental populations along with a novel way of visualizing the
pairwise genetic diversity. Pairs of individuals differed in 3.3M - 4.9M positions across six
representative pairs, of which 17-20% were private to one of those two individuals likely
implicating variants that were too rare to be seen in the rest of the sampled population. Notably,
the largest number of differing sites were within Africa: a pair of Yoruba/Yoruba individuals with
4.9M differences. In contrast, a Yoruba/French pair had 4.5M differences and a Yoruba/Han pair
had 4.4M differences. This is again consistent with the nested subsets model and the increased
genetic diversity in Africa compared to other populations. For the positions that differed between
individuals and were observed in reference populations, the majority (54%-76%) were common in
all four continental populations. In other words, most of the differences between pairs of
individuals were because one individual carried a globally common allele and the other did
not. As (Biddanda, Rice, and Novembre 2020) conclude: “The results show how the human
population has an abundance of localized rare variants and broadly shared common variants,
with a paucity of private, locally common variants”. The nested subset model continues to
explain genetic variation better than a race-like model in pairwise comparisons.

Visualization of the frequency of variants that differ in a pair of individuals.
(A) How pairwise differences are defined. (B) Visualization of the frequency of the pairwise differences in

each continental population (x-axis: AFR/African, EUR/European, SAS/South Asian, EAS/East Asian,
AMR/Indigenous Americans) where colored blocks indicate whether the allele is [C] Common, [R] Rare, or

[u] unobserved and are scaled to match the fraction of pairwise differences. S: number of pairwise
differences; Su: number of pairwise differences that are not observed in another population; percentage
across the bottom: fraction of pairwise differences that are globally common (not [u] in any population).

Figure from (Biddanda, Rice, and Novembre 2020).
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Genetic drift between geographically diverse populations

We can summarize the overall “genetic distance” between populations using the metric of FST,
which can correspond to a variety of drift and migration parameters in idealized populations (see
[8.6]). (Bhatia et al. 2013) estimated the cross-population FST (see for derivation) for the core
HapMap continentally sampled populations. The estimates were compiled over all sequenced
variants and accounted for bias due to sample size.

Estimates of FST from cross-continent population pairs.
Nei/Hudson estimators with sample-size correction applied to whole-genome sequencing data from the
1000 Genomes continental populations (CEU: European; CHB: Chinese; IBS: Spanish; YRI; Nigerian). [*]

indicates variants were ascertained in the IBS population to evaluate the influence of ascertainment. Data
from (Bhatia et al. 2013).

Groups # SNPs Nei FST Hudson FST

CEU - CHB 7,799,780 0.112 0.106

CEU - YRI 17,814,120 0.149 0.139

CHB - YRI 17,814,120 0.175 0.161

IBS - YRI 17,814,120 0.145 0.131

IBS - YRI[*] 7,709,984 0.141 0.134

The average pairwise (Nei) FST was 0.15, implying that 15% of cross-continental genetic variation is
due to “between-population” differences. In other words, if we take the individual-level genetic
variation at a typical locus and condition out every individual’s population label, we will still be
left with 85% of the original variance. This value is remarkably consistent with Lewontin’s classic
1972 analysis of blood groups and the finding that “Less than 15% of all human genetic diversity
is accounted for by differences between human groups!“ (Lewontin 1972). This result may seem
obvious today, but it was in stark contrast to early racial theories that groups were under
extensive divergent selection leading to most variants being largely homozygous within-race and
highly divergent between-race; where one would expect FST values close to 1.0. Echoes of this
erroneous race-based thinking about genetic variation continue to reverberate today, even as
Lewontin’s findings have been extensively and repeatedly replicated.

Ancestry-based classification

Another way to think about genetic ancestry is as a classifier. For example, let’s say we want to
identify individuals who are homozygous for the minor allele of a polymorphism for clinical
purposes (e.g. it’s a recessive variant). Knowing that a given polymorphism is more common in
one population than another, we could use an ancestry population label as our classifier. What
kind of accuracy would we expect if we used genetic ancestry as the classifier? The figure below
shows classification accuracy in simulations with levels of FST of 0.11 (CEU/CHB), 0.13 (IBS/YRI), and
0.16 (CHB/YRI), as observed for the extreme continental populations above. In all three cases,
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classification accuracy (AUC) is approximately ~0.65 for a sample with equal size from each
subpopulation; which is to say, not much better than random (0.5). For comparison, using the
carrier status of one sibling produces a classification accuracy of ~0.82 and the carrier status of
both parents produces a classification accuracy of ~0.88. Indeed, it would take an FST of 0.5 –
equivalent to ~50,000 generations of drift (1.5 million years) or the time of Homo erectus – for
ancestry to achieve comparable predictive accuracy to that of a sibling; and and FST of ~0.7
(~300,000 generations) to reach the accuracy of both parents. Thus, even in cases where the
true underlying population label is used and populations are completely distinct (no
migration/admixture), ancestry is only a very weak indicator of genetic variation. This example
highlights the ongoing debate over using race/ancestry modifiers in clinical screens, which can
sometimes provide a small (but non-random) improvement in classification (Borrell et al. 2021).

Accuracy of determining genetic variant carrier status using genetic ancestry.
The accuracy (AUC) for detecting a minor allele carrier is shown for genetic ancestry at increasing levels of

FST, averaged across multiple simulated sites. For comparison, the accuracy of classification based on
sibling or parent carrier status is also shown (orange, red) as well as random (black). Random deviates
slightly from AUC of 0.5 because the population with higher frequency of the minor allele is presumed to

be known. [code]

9.4 | Continuous ancestry / Principal Components Analysis (PCA)

Theory

Principal Component Analysis (PCA) is a widely used mathematical technique that often produces
an informative low dimensional representation (i.e. a reduced version of the input data that
retains more of the original “signal” than just a random subset of the data). Given a data matrix,
PCA intends to identify a projection of the data into a smaller number of dimensions/components
that either (a) maximizes the variance in each projected dimension or (b) minimizes the mean
squared difference between the data and the projected dimension (these are equivalent)
while also ensuring that each component is uncorrelated (this is necessary to make the
problem solvable since many equivalent correlated components could otherwise be identified).
These components are also called eigenvectors (from the German prefix “eigen” or
own/inherent). In population genetics, PCA is typically applied to the centered sample-by-marker
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genotype matrix of alleles (with markers assumed or selected to be uncorrelated).
Computationally, this typically involves applying Singular Value Decomposition to the same
sample relatedness matrix used in molecular heritability estimation (see [2.2]) as shown:

Matrices involved in PCA of genetic data as obtained by Singular Value Decomposition
(top) The binary (or 0/1/2) allele matrix across individuals and markers taken as input (black/white); in this
cartoon one population has all black alleles and the other has all white alleles. The centered, and typically
normalized, version of the same matrix (grays); and the resulting relatedness matrix across individuals

(red/blue). (bottom) The SVD of the relatedness matrix defining: eigenvectors of the relatedness matrix in
V (red/blue), eigenvalues in Sigma (gray), and eigenvectors of the LD/variant correlation matrix (not shown)

in U. Colored bands are used to indicate orthogonality. The individual-level PCs are the columns of V
(highlighted in green).

What does a low dimensional projection of this matrix represent? We can think about the context
of data generated from two equally sized populations being reduced to a single dimension (i.e.
the leading eigenvector). Intuitively, allele frequencies will be more similar within the populations
than between them, and so the single eigenvector that maximizes the projected variance (or
minimizes the difference to the centered data) is one where the values are positive for one
population and negative for the other (Patterson, Price, and Reich 2006). When there are multiple
distinct populations, PCA is expected to continue to identify uncorrelated eigenvectors that
separate each of the successive populations. We can visualize this behavior for two distinct
populations in simulations in the figure below. The more variants we include in our data the more
precisely we can estimate the genetic correlation within/between populations, more of the
variance in the kinship is driven by population differences than by noise, and more of PC1
corresponds to a separation of the underlying population labels. Interestingly, if we increase the
sample size of one of the populations we see a shift in the location; this behavior is characterized
in detail in the next section.

https://paperpile.com/c/UwWSe8/zF2wD


Behavior of PCA with increasing number of markers for two discrete populations.
Simulations with two discrete populations with 10 samples each and an FST of ~0.04. (top) The kinship

matrix computed from an increasing number of markers. The diagonal was set to be missing for
visualization (bottom left) The inferred first principal component (PC1) from an increasing number of

markers where both populations have 10 samples. (bottom right) Same as left but where one population
has 1000 samples. Bottom panel based on figure from (McVean 2009). [code]

Sensitivity to detect structure / BBP threshold

So far we have discussed the behavior of PCA under the assumption that the underlying genetic
structure is observable (i.e. correlated with one or more leading eigenvectors) but how much
genetic structure can be detected? Notably, we previously saw (in the figure above) how a small
number of markers leads to relatedness correlations that are too noisy to produce PCs that
correlate with structure. The relationship between population structure and the sample size
needed to detect it was quantified in (Patterson, Price, and Reich 2006). Specifically, theory
suggests that for a matrix with a small number of large eigenvalues (as expected for genetic data
with relatively simple population structure) the leading eigenvector becomes significantly
detectable as a function of the true eigenvalue and number of individuals and markers in the
matrix. For two populations, where the variance explained by the first eigenvector is
approximately equal to FST, this eigenvector is significantly detectable as long as [FST > 1/sqrt(N*M)]
where [N] is the number of individuals and [M] is the number of markers; this is referred to as the
BBP threshold (for (Baik, Ben Arous, and Peche 2004), who described the relationship for
normally distributed data). Additionally, a “phase shift” is observed where structure below the
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BBP threshold is essentially undetectable and structure above the threshold quickly becomes
very easy to detect (especially if [N], the number of individuals is increased). We can observe this
threshold effect in simulations of two discrete populations in the figure below: with markers fixed
at 5,000 the first principal component / eigenvector exhibits a high squared correlation with the
true population label right at the expected BBP threshold as a function of sample size and FST

(with FST intentionally selected to be very low).

Detection of population structure at the BBP threshold in simulation.
The squared correlation between true population label and leading eigenvector (y-axis) shown for a

simulation with 5,000 independent markers and two populations of equal size (x-axis). The BBP threshold
for each population scenario is indicated with dots. Drift was induced to yield a BBP threshold value at
approximately 40, 20, and 10 samples corresponding to approximately 60-120 generations from an

ancestral population. [code]

A key takeaway from these findings, as emphasized by (Patterson, Price, and Reich 2006) is
that: “most large genetic datasets with human data will show some detectable population
structure.”. As we see in the simulations above, PCA is extremely sensitive and BBP theory
indicates that, for example, the ~60,000 independent variants in the genome and biobanks of
100,000s of individuals would be powered to detect FST values of <10-5. That corresponds to just
1-2 generations for a typical randomly mating population with Ne=10,000 (see [8.6]); in other
words at large sample sizes, PCA can detect essentially any level of population structure (if
sufficiently late components are considered). As an aside: the reason PCA alone may not be
sufficient to control for population stratification in GWAS and heritability analyses is that which
components capture trait-relevant stratification is not known and the relationship to the trait may
be non-linear, whereas PCA only identifies linear projections of the genotypes.

Finally, why is it that one can separate populations so easily with larger numbers of markers but
heritable trait variation across populations (QST) is expected to be low regardless of the number of
causal variants (see [8.7])? This distinction was explained in (Edge and Rosenberg 2015a):
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“Suppose we have a single locus at which the allele that is more common in population A
contributes to larger values of the trait. The influence of this locus on the trait gives us a hint
about population membership; that hint, however, is likely to be masked by the influence of
another locus at which the allele more common in population A reduces trait values.” In other
words, PCA is effectively adding up the squared differences between populations across
polymorphisms (i.e. the differences that drive variance between populations), so that many small
differences accumulate to eigenvectors that capture very subtle differences; whereas the trait
mean is adding up signed differences, so that many small differences do not accumulate into
large mean differences or QST values.

Interpreting PCA location and the impact of sampling bias

An alternative interpretation of PCA in the context of genetic genealogies was provided by
(McVean 2009). McVean showed that the terms in the kinship matrix correspond to the expected
coalescence time for the corresponding pairs of samples (i.e. the number of generations to the
most recent common ancestor) and the resulting SVD could then be interpreted in terms of
genealogical processes. This connection revealed several useful properties of PCA in structured
populations:

● When applied to two populations that diverged [d] generations ago from an ancestral
source, the euclidean distance between the populations along PC1 is equal to [sqrt(2d/T)]
where [T] is the average coalescence time in the total population.

● The positioning of the populations along PC1 relative to the origin is proportional to their
sample sizes (this explains the location shift in the figure above).

● The total variance explained by PC1 asymptotes at the FST between the populations. The
influence of SNP ascertainment on FST estimates will thus also influence PCA-based
inference (see [8.6]).

● If an admixed individual is projected into the PC space between the two source
populations, their location between the source populations is defined by their global
ancestry proportion (which is itself a realization of the relative coalescent time to each
source population).

● However, non-admixed individuals can still be projected into a location between the two
populations (for example, if they are derived from the ancestral population or a related
third population).

● As a consequence, PCA can not distinguish between different populations with the
same mean coalescent time (i.e. the leading eigenvectors will be the same up to some
arbitrary rotation).

The impact of genetic distance and sample size on the PCA location is demonstrated in the figure
below. For equally sized, randomly mating populations with a simple migration process the first
two PCs localize these populations into a grid as expected based on their divergences (panel a
and b). As the sample size of one population is increased (panel c and d) the larger populations
are localized closer to the origin and the overall relationship between populations is distorted.
This distortion can be substantial, for example in panel d the light blue and pink populations
appear much more similar than the pink and purple populations purely as an artifact of the

https://paperpile.com/c/UwWSe8/wj5nG


oversampling of the green population. Likewise, the red and green populations also appear much
more distant than they are in the true model.

Expected and apparent location of populations with migration and uneven sampling.
(a) The true space for nine populations with lines showing the migrations. (b) The inferred PCs with even

sampling. (c) The distortion of inferred PCs with uneven sampling of the red population. (d) Further
distortion with additional uneven sampling of the green population. Figure from (McVean 2009)

This distortion by sampling becomes more extreme when the subpopulations are not sampled
randomly and also not mating randomly. In the figure below, data is simulated from a single
homogenous population and then oversampled from one “family” with many offspring. When
PCA is applied to only the family, PC1 distinguishes the parents (and the children as “admixtures”)
and PC2 positions the children based on their arbitrary genetic similarity (panel a). When
additional unrelated individuals are included, PC1 distinguishes the family from the unrelated
individuals and then PC2 again distinguishes the parents from the children (panel b and c). This is
quite un-intuitive given that the parents are random draws from the homogenous population, but
because they are so genetically similar to their children, positioning them close to the family
members maximizes the variance along PC1. A naive analysis of this visualization might even
conclude that the purple and green samples are genetically distinct populations. Finally, when we
remove the children entirely, the entire population is then positioned in a random field as would
have been expected.

Inferred PCA components when oversampled with relatedness.
Visualizations of PC1 and PC2 from: (a) two parents from a homogenous population and five children; (b)
same with 10 unrelated individuals from the same population; (c) same with 100 unrelated individuals from

the same population; (d) only the unrelated individuals. [code]

Interpreting PCA shape and local structure
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So far we have primarily looked at the expected behavior of PCs for well defined structured
populations, but PCA also produces unexpected behavior for more complex populations with
small-scale local structure. Early analyses of PCA with relatively small sample sizes often used
allele frequencies as the input data instead of individuals/alleles and then projected the
eigenvector positions onto geographic maps (some examples shown in the figure below). The
shape of these “PC maps” would then be interpreted as evidence of historic population migration
and expansion, with radial gradients interpreted as the likely source/ancestral populations
spreading outwards over time.

Artifactual PCA spatial gradients under local structure
(a) Theory and simulations under a stepping-stone model (left) compared to equivalent gradients observed

in PCA maps from real data (right). (b) Simulations under a linear isolation-by-distance model (top)
compared to gradients observed in individual-level PCA projections (bottom). Figures from (Novembre and

Stephens 2008).

However, key work by (Novembre and Stephens 2008) eventually showed that nearly identical
patterns can be observed artifactually from much simpler demographic models, as a basic
mathematical consequence of analyzing data with local spatial structure. Specifically, Novembre
simulated data under a “stepping stone” generative model, where a population gradually
migrates along a grid. As expected PC1 showed a gradient with respect to the simulated
geography. However, the subsequent PCs showed shapes expected from matrix theory: a
perpendicular gradient in PC2, a “saddle” in PC3, and a “mound” in PC4 (grids in panel a above);
even though no such patterns were present in the underlying topology. Likewise, when
simulating data from an even simpler one dimensional isolation-by-distance simulation and
applying PCA at the level of individuals (as described above), increasing variations of sinusoidal
gradients were again observed in PC2-PC4 (panel b, above). As it turns out, these shapes are
expected from any data where the inputs/populations are locally similar and have linear, circular,
or grid-like spatial structure and this behavior has been observed in many other fields. The exact
same patterns of spatial PC gradients had been observed in analyses of real genetic data from
spatially distributed populations and interpreted as historically meaningful (maps in panel a,
above). More troubling, these patterns were observed across data from multiple continents,
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which were highly unlikely to experience the same exact spatial patterns of migration in the same
exact order. Thus, while simulations alone cannot definitely rule out that the PC maps were
incorrect, it is clear that spatially distributed data analyzed with PCA will produce complex
spatial gradients even when no complex spatial migration has occurred.

9.5 | A word on nonlinear dimensionality reduction / UMAP

A number of alternative dimensionality reduction methods have been applied to genomic data,
including nonlinear methods such as UMAP/t-SNE. Typically, these approaches use a
non-deterministic algorithm to optimize some measure of local/global sample distance while
projecting the samples into a two-dimensional space. A potential advantage is the ability to
efficiently visualize higher dimensional structure in two dimensions: whereas PCA is expected to
separate two major populations per PC and lump other individuals where they are most
genetically similar, UMAP might place population clusters observed in higher dimensions into
“islands” in the 2-dimensional space. Thus UMAP can be useful for exploratory data analysis,
identification of data artifacts (which can be non-linear), or structure that only appears in very high
dimensions (Diaz-Papkovich, Anderson-Trocmé, and Gravel 2021). However, most natural
population relationships, such as admixture and migration, are additive combinations that are well
modeled by existing methods. And unlike PCA, non-linear methods generally do not have
genealogical or phylogenetic interpretations (even for idealized populations) and tend to
produce arbitrarily nonlinear layouts and clusters. Thus, for visualization of broad population
relationships, nonlinear methods provide limited benefit while running the risk of grossly
distorting the results.

An example of this type of distortion can be seen in the figure below, from an analysis of the large
population-level sample in theUK Biobank by (Diaz-Papkovich et al. 2019). Panel a shows the first
two principal components from PCA, which lays out individuals along orthogonal axes (a
requirement of PCA) in proximity to the three most divergent populations in the dataset, which
are enriched for individuals recorded as (i) White British (WB, blue); (ii) Black African (BA, brown);
(iii) Chinese (CHN, pink). Panel b shows the same data analyzed with UMAP (in this case also run
on top of PCA); similar ethnicity enrichments are observed but they form loose swirls and tails
that are mostly meaningless. For example, a cluster enriched for Black African (BA) and Black
Caribbean (BC) identification exhibits a snaking pattern that eventually connects with the White
British (WB) group; this almost certainly reflects individuals with different levels of admixture from
primarily African and European populations, which UMAP then arbitrarily projects onto
meaningless curves. How do we know these swirls are meaningless? Panel c shows the same
data analyzed with an increasing number of starting components: as more components are
included the swirls change, arbitrarily contracting or expanding with little relationship to
underlying genealogical patterns. In short, while non-linear reduction may be useful for data
exploration, there are typically better ways of visualizing population structure.

PCA and UMAP analyses in the UK Biobank
In every figure an individual is plotted as a point and color-coded by self-reported ethnicity. (a) Standard
PCA analysis of the UK Biobank plotting PC1 vs PC2 color-coded by ancestry clusters. (b) The same data
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visualized with UMAP. (c) UMAP analysis initialized from an increasing number of principal components
produces arbitrary nonlinear representations. [Figures from (Diaz-Papkovich et al. 2019)]

9.6 | Model-based clustering of ancestry / STRUCTURE

An alternative approach to dimensionality reduction is “model-based clustering” as implemented
in the widely used STRUCTURE software (Pritchard, Stephens, and Donnelly 2000). The
approach is analogous to Latent Dirichlet Allocation (LDA) or “topic modeling”, common in
machine learning and natural language processing. The underlying model is intuitive: individuals
are defined as mixtures from a predefined number of populations and populations are defined by
allele frequencies (i.e. mixtures of alleles); the assignments of frequencies to populations and
probabilistic assignments of populations to individuals are then optimized through a (typically)
iterative sampling algorithm. The parameters of the model are the number of clusters (k) and a
Dirichlet distribution parameter (α) which reflects the number of populations each sample is
expected to be drawn from (high versus low values implying that each individual is a mixture of
many versus few populations). In practice, the model-based outputs from STRUCTURE are often
highly correlated to the variance-based outputs from PCA and expected to share similar
sensitivity characteristics (Patterson, Price, and Reich 2006). Like PCA, STRUCTURE suffers from
issues of distortion due to the sampling process and identifiability of population genealogies, as
well as the need to specify k and α.

Sensitivity to sampling and α

STRUCTURE assigns individuals probabilistic population labels and is therefore distorted by
sampling in a slightly different way than PCA. Rather than distorting the location of individuals in
some continuous space, STRUCTURE distorts the probability distribution of belonging to a given
population. We can see this in a simple simulation where individuals are drawn along a linear
ancestry continuum and analyzed with STRUCTURE at k=2 (see figure below). When individuals
are sampled uniformly, the inferred admixture proportions roughly correspond to the true genetic
distance from the source population. However, as individuals are oversampled from one end of
the spectrum (for example, as would happen when comparing modern and ancient data) they
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become severely underrepresented in the cluster calling. For example, an individual that is from a
population 50% along the continuum is inferred as 0-20% when the sampling is skewed. This
distortion occurs even though individuals from the entire continuum are present in the data. This
effect is amplified if we decrease the α parameter such that individuals are expected to be
sampled from fewer populations a priori, with individuals frequently assigned to be 100% from
their closest population. In short, the population assignments that STRUCTURE makes are
highly dependent on the population sampling scheme and, to some extent, the prior
probability on population diversity.

The impact of sampling on population labels from STRUCTURE
Simulated individuals drawn from a population continuum (with Fst of ~0.14 at the extremes), followed by

sampling and ancestry inference with a STRUCTURE-like algorithm (LDA) specified to k=2. In each
instance, 8% of the individuals are sampled uniformly and the rest are either sampled uniformly (a,d), from
the top 50% of the continuum (b,e), or from the top 25% of the continuum (c,f). Individual-level calls are

shown as blue points with grouped means shown in black points. Top row shows results with α (population
mixing) of 0.5 and bottom row shows α of 0.1 (lower values imply individuals are less likely to belong to

multiple populations). [code]

Sensitivity to k

Bias due to sampling can be further amplified in the context of multiple underlying populations,
which can hinge on the choice of k clusters. (Lawson, van Dorp, and Falush 2018) highlight this
issue by re-analyzing data from (Friedlaender et al. 2008) which studied a large cohort of
individuals from Melanesia along with reference populations from other continents. Even though
the dominant driver of genetic variation across these populations is the migration out of Africa,
STRUCTURE with k=2 infers one homogenous population for the Melanesian cohorts and a
second homogenous population for all of Africa, Europe, the Middle East, and the Americas, with
an admixture cline through Asian/Polynesian cohorts. This mirrors the simulations above, where
sampling populations at one end of a continuum clusters together much more diverged
populations from the other end. Notably, increasing k initially made the bias worse, with European
individuals appearing to be a mix of Melansian and Asian populations through k=9 and only
assigned their own cluster at k=10.
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STRUCTURE clusters together broad continental populations while distinguishing Melanesian
sub-groups

Melanesian cohorts (New Guinea, New Britain, New Ireland, Bougainville) were heavily sampled and thus
assigned to one of the primary clusters by STRUCTURE with k=2. Figure from (Friedlaender et al. 2008)

and (Lawson, van Dorp, and Falush 2018).

Identifiability

Like PCA, STRUCTURE may be unable to distinguish between populations with different
phylogenies, particularly when their genetic history deviates from the clean divergence and
admixture the model assumes. (Lawson, van Dorp, and Falush 2018) highlight three
fundamentally different demographic scenarios that produce identical STRUCTURE results:

Three different populations that yield identical STRUCTURE outputs
(a) The simulated population relationships for the four focal populations. (b) The output population

proportions from STRUCTURE with k=10, for a simulation with 13 populations (all other outgroups grayed
out). [Figure from (Lawson, van Dorp, and Falush 2018)]

First, an idealized population is simulated with very recent admixture from three highly divergent
ancestral populations. As expected, STRUCTURE infers three (nearly) unadmixed populations and
one mixture population (P2) with accurate admixture proportions. Next, a “ghost admixture”
population is simulated, with recent admixture from two populations, one of which is observed
and the other (the “ghost”) which is unobserved but related to two observed populations.
STRUCTURE infers the same three-way admixture as in the first scenario because it does not
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observe the intermediate admixture source, instead interpreting distant phylogenetic
relationships as if they were admixture events. Finally, four unadmixed populations are
simulated, with accelerated drift in one population (P1) due to a population bottleneck.
STRUCTURE again infers the three-way admixture output even though no admixture has
occurred at all. Due to the excess drift in P1 making it genetically distinct, STRUCTURE defines it
as a homogenous population and then fits P2 as a “mixture” from its closest populations in the
phylogeny. This form of model misspecification has become particularly apparent with the
analysis of ancient DNA, where the linear passage of time guarantees that ancient individuals are
not admixtures of modern ones and yet STRUCTURE analyses often infer exactly such
admixtures (see figure below):

Ancient samples are estimated by STRUCTURE to be admixtures of modern individuals
Ancient neolithic (blue and red) and modern European samples were analyzed together, with the former
identified as admixtures of modern Northern/Southern European populations. Results shown for k=4 but

admixture in ancient samples was estimated at all k values. [Figure from (Skoglund et al. 2012)]

In each of these examples, a population is incorrectly inferred as admixed, but the opposite can
also be true: admixed populations will be incorrectly inferred as homogenous if all samples
exhibit similar levels of admixture. For example, European individuals exhibiting similar levels of
Neanderthal admixture will be treated as a homogenous population by STRUCTURE, with
Neanderthal alleles simply integrated into the population allele frequency estimates, because
there is no inter-individual variation to exploit. As (Lawson, van Dorp, and Falush 2018)
summarize: “the algorithm attempts to fit the data as best it can by finding the combination of
admixture proportions and ancestral frequencies that best explain the observed patterns.”

9.7 | A word on parametric models / admixture graphs

A third class of models attempt to identify the parameters of a generative process that provide
the best fit to the data, typically along a tree or an “admixture graph”. Such models typically
operate in units of genetic drift (see [8.2]), which enables useful cross-population comparisons
without requiring knowledge of the population sizes or generational time relationships (for which
other estimators exist). Admixture graphs, in particular, rely on tests of allele sharing called
“f-statistics” which can (a) estimate the genetic drift between populations assuming no migration,
(b) test for the presence of admixture, and (c) infer admixture proportions. With these building
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blocks, one can then search for parameters of a tree or directed graph that maximize the fit to the
data (Peter 2016; Lipson 2020). Many other parametric approaches exist that incorporate other
aspects of genetic variation but they all typically operate along the same principles: searching for
parameters of a graph that maximize the “fit” to the data under some graph-to-data generative
model. These parametric models can provide highly complex population relationships that are
more informative than the simple dimensions or clusters produced by PCA and STRUCTURE. But
a key challenge for these approaches is ensuring that the data does not fit just as well under
completely different parameters. As the number of populations and parameters expands, it
becomes impossible to simply enumerate all possible graphs, and so such methods also need to
ensure that they are maximizing the fit relative to graphs that they have not observed.

This issue of admixture graph identifiability was extensively analyzed in (Maier et al. 2023),
empowered by an efficient software implementation that allowed them to efficiently traverse a
much larger number of graphs than prior methods. In simulations of random (but realistic)
topologies where the true graph was known, the authors found that at least one alternative graph
provided a significantly better fit 60% of the time (when fixing the number of admixture events to
the true value) or 100% of the time (when allowing an additional admixture event) (see example in
panel a below). They then reanalyzed data from prior published studies that had inferred
admixture graphs. In 19/22 instances a better fitting graph could be identified with a broader
parameter search, and in roughly half the instances the graph was significantly better fitting.
Moreover, in many cases a large fraction of graphs were not significantly worse than the
published graph, implying that many alternative topologies could be just as representative of the
data as the one that was ultimately selected.

Admixture graph identifiability in simulation and real data
(a) Erroneous admixture graphs (middle, right) can provide a better fit to genetic data than the true

underlying structure (left). (b) The percentage of graphs that provided a Better/Worse fit to data than the
published graph, in re-analysis of published studies. [*] indicating statistically significant differences. In

some studies, only a minority of alternative graphs are significantly worse. [Figure and Table from (Maier et
al. 2023)]

(a) Incorrect admixture graphs can have better fit to the data (b) Re-analyzed data Better
[*]

Better Worse Worse
[*]

Wang et al., 2021 13% 84% 3% 0%

Lazaridis et al., 2014 1% 12% 81% 6%

Lipson et al., 2020b 0% 12% 77% 10%

Hajdinjak et al., 2021 16% 56% 7% 22%

Sikora et al., 2019 0% 17% 35% 48%

Librado et al., 2021 7% 16% 24% 53%

Librado et al., 2021 0% 0% 28% 71%

Bergström et al., 2020 1% 2% 17% 81%

Sikora et al., 2019 0% 1% 10% 89%

Shinde et al., 2019 0% 3% 4% 94%

Librado et al., 2021 0% 0% 5% 96%
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(Maier et al. 2023) discuss a number of specific examples where the alternative topologies have
meaningful differences from the published graph, including identifying population relationships
and admixture that were thought to be non-existent or providing alternative topologies where
identified admixture events did not exist. A particularly striking example was the re-analysis of
ancient DNA from an African genome found in a rockshelter in Cameroon (Lipson et al. 2020).
The original study identified ancestry from two distinct populations, as well as a “ghost” ancestor
population, and a highly divergent “archaic” ancestor. Yet alternative and equally likely admixture
graphs were identified that contravened all four of these observations. The true history and
origins of this genome thus remain an open question (see more on model identifiability in Africa
in [9.9]). In short, parametric models can be a powerful tool for inferring interpretable
population topologies, but this flexibility comes at the cost of identifiability. As is often the
case in data modeling, drawing confident conclusions requires triangulating across prior
knowledge, orthogonal (typically archeological) evidence, and a variety of alternative methods.

9.8 | A final word on ancestry “realism”

It is tempting to take the outputs from dimensionality reduction (PCA) or model-based clustering
(STRUCTURE) and treat them as if they reveal a data-driven truth or reality. To state the obvious:
PCA (or STRUCTURE or an admixture graph) is not an oracle and it does not reveal “true”
ancestry, population labels, or `k` values. These methods have some appealing properties and
expectations in idealized populations, but the specific layout and distances in real data are
consistent with many population models and also highly dependent on the sampling and
complexities of real data. It is trivial for these methods to produce nonsensical results: (i)
projecting un-admixed individuals from an out-group into the same ancestry location as an
admixed individual; (ii) locating two populations close together simply due to oversampling of a
third population; (iii) simultaneously under-estimating and over-estimating population probabilities
due to oversampling of individuals from a population continuum, etc. And as emphasized in
(Lawson, van Dorp, and Falush 2018), it is not possible to know the “true” sample! Population
sizes today do not reflect their historic genetic contribution due to the influence of non-genetic
events such as wars, famines, natural disasters, population expansions, etc. Distortion due to
sampling would thus be present even if one were able to run PCA on the entire global
population. Likewise, BBP theory shows that there is no “true” number of leading PCs or `k`
clusters: inclusion of more data enables the inference of more refined components or clusters all
the way down to individual families.

For this reason, while PCA/STRUCTURE are frequently used to visualize and explore genetic
data, other tests are typically employed to make concrete quantifications about population
relationships: by using metrics that are unbiased with respect to sample size (e.g. “F-statistics” as
summarized in (Peter 2016)), or by defining/fixing populations based on external information (such
as geography or time) and manipulating the sampling/parameters to match these assumptions
(Novembre et al. 2008).
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9.9 | Genetic ancestry in real data

While the above analyses of genetic distances were focused on populations intentionally
ascertained to be racially and geographically distinct, what patterns of genetic ancestry do we
see with large-scale, modern data from larger, representative studies?

Ancestry versus race

First, the discordance between race and genetic ancestry is apparent in just about every large
genetic cohort that has been analyzed. The PAGE study (Wojcik et al. 2019) aggregated data from
three large population-based cohorts that focused on recruiting primarily participants who
self-identified as non-white, thus offering an opportunity to directly contrast race and genetic
ancestry. When overlaying genetic ancestry on self-reported race, it is clear that every racial
group exhibits broad continuums of ancestry and contains individuals from all continental
ancestries (recall that under simplifying assumptions, the location in PCA space is a proxy for
global ancestry proportions). For example, self-reported African Americans exhibit a gradient of
ancestry between populations ascertained from the African and European continents, but also
include individuals that map entirely to the continental European or Asian locations of the PCA
space. Likewise, Hispanic/Latino individuals exhibit extensive three-way admixture from
continental European, Asian, and African source populations. In other words, race neither
identifies a clean cluster of genetic ancestry, nor even a clean bifurcation of the ancestry
continuum. Although race is correlated with ancestry, it is useless in dividing the ancestry
space.

PCA of genetic ancestry in three large population-based cohorts.
(a) The PAGE cohort of primarily non-white participants separated by self-reported race shows continuous
genetic ancestry in all groups [Figure from (Wojcik et al. 2019)]. (b) The ATLAS cohort from the UCLA health
system, color-coded by race recorded in the electronic medical record [Figure from (Johnson et al. 2022)].
(c) The BioMe biobank collected in New York City (gray points) overlapped with data from HapMap/1000

Genomes reference populations (color coded) [Figure from (Lewis et al. 2022)].
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The PAGE study is hardly unique and similar patterns are observed in nearly every major biobank
collected to date. In the figure above, PCA plots are shown from the ATLAS (UCLA Health
System) and BioVu (Mount Sinai Hospital) studies and contrasted with self-reported race or
continental reference populations In all instances, continuous genetic variation and ancestry
drawn from multiple continental sources was ubiquitous.

Finally, the most direct practical implication of the distinction between race and genetic ancestry
is that race is hardly ever used in purely genetic analyses: the conventional workflow for a
Genome-Wide Association Study, for example, is to identify many (10’s or even 100’s) of
continuous Principal Components from the data itself and include them as covariates (Tian,
Gregersen, and Seldin 2008). Where race is analyzed, it is explicitly to contrast with or
understand environmental and social factors, or as a crude proxy when genetic data is not
available (see much more discussion on the use of race and ancestry in (Borrell et al. 2021) and
the report from the National Academies (National Academies of Sciences, Engineering, and
Medicine et al. 2023)).

Fine-scale structure

As we move beyond cosmopolitan populations we should expect PCA to continue identifying
fine-scale structure at every level of ascertainment as long as the sample size is sufficiently large,
as forecast by BBP theory (see [9.3]). Indeed, fine scale population structure is clearly observed
even when restricting to seemingly racially “homogenous” populations. Two large scale
studies of “White” individuals in the US and UK are highlighted in the figure below. (Galinsky et al.
2016) applied PCA to ~55k individuals from the GERA cohort (primarily collected in Northern
California) after restricting to those with minimal genetic similarity with non-European reference
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populations. This analysis revealed the expected clines of population structure reflecting recent
geography. When combined with individuals sampled from specific regions of Europe, the
leading PCs showed correlation with North/South and East/West European countries, with
substantial continuous ancestry between these groups (see panel a below). (Agrawal et al. 2020)
applied PCA to ~280k unrelated “White British” individuals (identified based on self-reported race
and genetic similarity with European reference populations) with known geographic birth
coordinates. The leading PCs showed substantial structure and correlation with geography of the
United Kingdom, including multiple North/South and East/West clines (see panel b below).

PCA reveals fine-scale structure in white US and UK populations.
(a) PCA in the US GERA cohort overlaid with populations sampled from parts of Europe (color coded)

[Figure from (Galinsky et al. 2016)]. (b) PCA in the UK Biobank plotted along geographic birth coordinates
[Figure from (Agrawal et al. 2020)].

Similar patterns continue to be observed in global biobank studies of seemingly homogenous
populations (detailed in the figure below). PCA applied to the China Kadoorie biobank revealed
population structure corresponding to regions and major cities in China (Walters et al. 2023).
Even when restricting to data collected from individual cities, the leading Principal Components
exhibited continuous correlation with local, neighborhood-level geography (see panels a,b,c
below). STRUCTURE applied to ~170k Japanese ancestry participants in the Biobank Japan
identified 11 clusters corresponding to Japanese regions, cities, and islands (Sakaue et al. 2020)
(see panel d below). Many of these ancestry gradations were not previously known because data
from Japan had been limited and presumed to be highly homogenous given the relatively
isolated history of the country. PCA applied to ~20,000 French Canadian participants across
multiple biobanks revealed fine-scale geographic structure along the communities, lakes/rivers,
and mountains of Quebec (Anderson-Trocmé et al. 2023) (see panels e,f below).

PCA reveals extensive fine-scale structure in global populations.
(a, b, c) Geographic sampling, leading Principal Components, and fine-scale Principal Components within
individual neighborhoods for individuals in the China Kadoorie biobank [Figures from (Walters et al. 2023)].
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(d) STRUCTURE analysis revealing 11 clusters in the Biobank Japan [Figure from (Sakaue et al. 2020)]. (e, f)
Geographic sampling and leading Principal Components for individuals from Quebec, Canada [Figures

from (Anderson-Trocmé et al. 2023)]

In short, continuous ancestry clines are observed within racial groups (Asia), within “sub-racial”
groups (China/Japan), within “sub-sub-racial” groups (cities in China), within “sub-sub-sub-racial”
groups (neighborhoods in cities in China) and so on. These findings are entirely consistent with
matrix theory and the extremely sensitive nature of PCA to detect structure as recent as 1-2
generations given sufficient sample size. Ubiquitous and easily detectable continuous ancestry
underscores the lack of evolutionary validity for conventional and population-based “race”
models: variation in contemporary individuals is largely unexplained by racial labels, is highly
continuous and admixed, and exhibits correlation with geographic and social structure ad
infinitum.

9.10 | Human history through the lens of modern and ancient
DNA

The sequencing of ancient DNA, typically reconstructed from historic specimens such as bones,
has provided a window into historic ancestry components that were otherwise unobserved or
unidentifiable from modern data. It is now common to integrate large-scale data from
contemporary populations together with ancient genomes to infer population structure. While the
topic of ancient DNA could fill a book, this section is meant to provide a very brief overview of the
major advances and outstanding challenges in the field and how they relate to the contemporary
questions regarding race, ancestry, and geography.

Theory: modeling human expansion and diversity

A long-standing observation in human genetics has been the decrease in genetic diversity with
geographic distance from Africa. This gradient was often interpreted under a “serial founder”
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model, whereby humans migrated from Africa and experienced repeated bottlenecks followed by
locally isolated mating. This combination of bottlenecks and isolation would have reduced
diversity within each population along the migratory route and was thought to explain the
patterns observed in modern genetic data. This simple model was conceptually aligned with the
“population-based” models of race, which also presumed that populations were highly divergent
and would easily form natural genetic clusters. However, recent studies of ancient DNA have
shown that the serial founder model of human history is almost certainly wrong. Notably,
ancient genomes often exhibit much lower genetic diversity than more contemporary individuals,
consistent with recent admixture and migration (Skoglund and Mathieson 2018).

Genetic diversity out of Africa in real data and in models
(a) Heterozygosity (y-axis) as a function of geographic distance from Africa in real genomic data. Ancient
genomes are marked in black and often show lower heterozygosity than modern data, consistent with
admixture. [Figure from (Skoglund and Mathieson 2018)]. (b-d) Three different models of migration and

admixture that produce equivalent heterozygosity/distance gradients in simulations [Figure from (Pickrell
and Reich 2014)].

How could alternative models produce the pattern of decreasing diversity we see in modern
data? (Pickrell and Reich 2014) showed through simulations that an identical gradient of
decreasing diversity can indeed be observed under multiple different demographies (see figure
above). A model with two “severe bottlenecks” followed by semi-local population admixture
would produce such a gradient, with the bottlenecks severely reducing diversity in two
sub-populations followed by admixture replenishing it along the cline. Even a model with no
bottlenecks whatsoever but multiple ancient admixture events (from a highly diverged population
such as Neanderthal) followed by extensive recent admixture can also produce such a gradient.
In this scenario, rather than bottlenecks decreasing diversity, the ancient admixture increases
diversity and extensive admixture events distribute it into a cline. These simulations are, of
course, only illustrative. In principle, the observed geographic cline can be explained by many
different combinations of events: bottlenecks (decreasing diversity), archaic admixture
(increasing within-population diversity), and recent admixture (distributing diversity across nearby
populations). An interesting corollary is that only the serial founder model requires geographic
expansion from Africa. For example, the “few bottlenecks” model is consistent with a history
where humans originate in Europe and migrate to Africa, experiencing bottlenecks in Europe
(decreasing diversity) and expansion in Africa (increasing diversity) followed by
migration/admixture. Because contemporary genetic data is variable in ancestry and geography
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but fixed in time, it cannot identify these different models. Ancient DNA is additionally variable in
time, and can thus impose novel constraints on the data-generating process and space of
possible human histories.

Pervasive admixture and migration in Eurasia and the Americas

Surveying the ancient DNA studies of the time, (Pickrell and Reich 2014) conclude that simple
evolutionary models of serial founder events and isolation are no longer supported by genetic
data:

“
It is now clear that the data contradict any model in which the genetic structure of the world
today is approximately the same as it was immediately following the out-of-Africa expansion.
Instead, the last 50,000 years of human history have witnessed major upheavals, such that
much of the geographic information about the first human migrations has been overwritten by
subsequent population movements.

Rough timeline of major migrations and admixtures since the African migration
[Figure from (Pickrell and Reich 2014)]

In the decade since, this conclusion has only become more firmly supported by data from global
populations. In the Americas, (Moreno-Estrada et al. 2013) and (Gravel et al. 2013) showed that
contemporary individuals from Latin America exhibit substantial fractions of European admixture
and are often more similar to European than to Native American reference samples. For example,
STRUCTURE analysis of whole genomes from Mexican, Columbian, and Puerto Rican individuals
estimated their similarity to Native American reference samples at just 48%, 25%, and 13%
respectively (Gravel et al. 2013). What about the origins of those Native American reference
samples? (Ioannidis et al. 2020) identified genetic sharing between Polynesian individuals and
Native American samples consistent with pre-Columbian contact across the Pacific; though the
precise directionality of the admixture is compatible with multiple histories. And those Polynesian
samples? Analyses of ancient DNA from Oceania suggest that the settlers of Polynesia likely
came directly from East Asia rather than nearby Papua New Guinea, only mixing with Papuan
individuals at a later point (Skoglund et al. 2016). In short, ancient movements to the Americas
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were highly dynamic and often detached from simple geographic proximity, followed by
aggressive European colonization that fundamentally transformed the genetic mixtures of
modern people.

Extensive admixture in the people of the Americas
(a) Admixture analysis of contemporary Caribbean populations [Figure from (Moreno-Estrada et al. 2013)].
(b) Admixture analysis of Colombian, Mexican, and Puerto Rican populations [Figure from (Gravel et al.
2013)]. (c) Recent genetic sharing (green segments) among Polynesian islands and admixture with Native
American populations and approximate dates (dotted segments) [Figure from (Ioannidis et al. 2020)].

In Eurasia, ancient data supports multiple waves of mixture and expansion though the precise
timescales and source populations are still contested. In ancient DNA samples from Siberia,
Native American ancestry pinpointed a population that likely mixed with both the ancestors of
modern-day Europeans and populations that subsequently expanded into Native Americans
(Lazaridis et al. 2014; Sikora et al. 2019). In contrast, modern Siberian populations share more of
the genetic ancestry with East Asian individuals than with these ancient Siberian samples,
highlighting a third historic migration event that defines the contemporary genetic landscape. The
fact that ancient individuals often appear to derive ancestry from populations that are no longer
un-admixed today is both remarkable and poses a major challenge for simple cluster-based
interpretation of ancient and modern data.

Waves of migration and admixture in Eurasia inferred from ancient DNA.
(a) Map of major admixture and migration events in Eurasia reconstructed from ancient DNA; [Figure from
(Y. Liu et al. 2021)]. (b) Rapid replacement of >90% of neolithic British ancestry through expansion of the
Beaker complex ~4-5kya [Figure from (Olalde et al. 2018)]. (c) Ancestry “outliers” in ancient DNA from

European regions in the past 3,000 years and (d) reconstructed migration paths for outliers. (c,d) [Figure
from (Antonio et al. 2024)].
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In some cases, population shifts appear to be extremely rapid, such as the apparent replacement
of 90% of ancestry in Britain with steppe-related ancestry through expansion of the Bell Beaker
cultural complex through the Bronze age (~2.5kya) (Olalde et al. 2018) (panel b above). In other
cases, the data support a complex relationship between migration and long-term structure.
Recent analyses of DNA specimens from Europe during the Bronze age (up to 3kya) revealed a
substantial fraction of ancestry “outliers” in most of the sampled geographic sites (Antonio et al.
2024) (pane c,d above). At least 7% of the sequenced individuals showed significant ancestry
from a region other than where they were sampled, with some spanning major geographic
barriers. Interestingly, the high fraction of ancestry outliers nevertheless co-occurred with
sustained population structure in these regions over time, suggesting that migrating individuals
either did not settle in the regions they were buried or exhibited spatial migration/mating patterns
that are not consistent with simple random mating. In short, much like today, ancient people
appear to have traveled across Europe for work or trade, while simultaneously maintaining
stratified societies.

Model identifiability in Africa

Remarkably, while we know that there is much more genetic variation in Africa than in other parts
of the world, we still do not fully understand the migration patterns within and out of Africa during
the modern human period. Recent analyses of contemporary African genomes show many
populations that appear to have diverged tens of thousands of years ago, followed by recent
migration and gene flow that sometimes spanned the continent (Fan et al. 2023). When modeling
African populations with a simple phylogenetic structure that does not allow admixture, most
populations were clustered within their current geographic locations and consistent with their
language groups (panel a below). In contrast, when admixture and migration was allowed in
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the model, the recovered topologies were significantly different: “the Hadza and Sandawe,
respectively derive 71% and 38% ancestry from a population ancestral to the southern African
Khoesan population … These populations, particularly the Sandawe, also derive ancestries from
an Afroasiatic-like population, likely reflecting recent Afroasiatic gene flow … the Ethiopian
populations (Amhara, Dizi, Mursi, and Chabu) derived 98% and 2% of their ancestries from a
population ancestral to the Hadza and a population ancestral to all modern human populations,
respectively … 80% of the Omotic-speaking Dizi ancestry can be traced back to a Chabu-related
population and 20% to an Amhara-related population … the RHG derive 37% of their ancestry
from a population ancestral to the San and 63% of their ancestry from a Niger Congo-speaking
population” (Fan et al. 2023) (visualized in panel b,c below). While the precise relationships
remain ambiguous, there is clear evidence of extensive gene flow between African populations.

The traces of admixture and migration in modern Africa genomes
(a) Simple neighbor-joining tree of genomic data without admixture/migration. (b) Admixture graph

reconstruction of genomic data allowing for 10 admixture events; putative ancient admixtures shown in
gray. (c) Schematic of demographic reconstruction from modern African genomic data with blue bars
indicating gene flow. Upper roots indicate genetic material from multiple “ghost” populations into the

ancestors of modern humans. OOA: Out of Africa populations. [Figures from (Fan et al. 2023)].

Studies of ancient African genomes have begun to orient these divergences and mixtures in time.
This includes the identification of deep population structure and admixture throughout Africa
(Lipson et al. 2020) (panel b,c below; but see (Maier et al. 2023) for alternative models), mixture
between pastoralist and forager groups during the spread of food production (K. Wang et al.
2020), and substantial change in population structure as a likely consequence of the spread of
food production (Skoglund et al. 2017).

Model identifiability in ancient Africa
(a) Multiple putative models of African replacement/expansion [Figure from (Bergström et al. 2021)]. (b,c)

Admixture graph and corresponding geographic locations inferred using ancient African genomes. [Figure
from (Lipson et al. 2020), but see (Maier et al. 2023) for alternative models]. (d) Best-fitting model of

African population structure when allowing for continuous and reciprocal migration (bi-directional arrows)
[Figure from (Ragsdale et al. 2023)]
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Coming back to models of human expansion, the complex structure, divergence, and mixture in
Africa has left this fundamental question largely unresolved (panel a above) (Bergström et al.
2021). A simple model of complete population replacement can be rejected based on the
presence of small fractions of very ancient ancestry in modern and contemporary individuals.
However, highly divergent ancestry is observed in many parts of Africa (Skoglund et al. 2017;
Lipson et al. 2020), making it difficult to anchor more complex models of expansion. Indeed, even
these initial findings of deep structure now appear to be compatible with multiple alternative
phylogenies (Maier et al. 2023) (see [9.7]). In one proposed “pan-African” model, African groups
lived in multiple “structured but connected” subpopulations forming a “metapopulation” with
continuous and complex gene flow (Scerri, Chikhi, and Thomas 2019; Ragsdale et al. 2023) (panel
d above). This model could potentially explain the mosaic of genetic and archaeological findings,
but is also difficult to verify with current statistical methods which generally assume trees and
defined mixtures. Such a “structured but connected” model may also mirror the structured
migration that was recently observed – albeit at a much shorter time scale – in Bronze Age
Europe (see above). Alternatively, a “back to Africa” model proposes that the same population
that migrated out of Africa also expanded back across Africa from the East, substantially (but not
completely) replacing a structured historic population (Cole et al. 2020). Finally, lurking amidst
these possible histories is the indeterminate evidence of multiple admixture events with a
population that diverged millions of years ago from humans (evidence that has also been recently
contested (Ragsdale et al. 2023)).

In sum, it is remarkable that while ancient DNA has informed the history of many populations,
there is still so much ambiguity about human history in Africa. This is in part due to the basic
technical challenges of extracting ancient DNA out of remains in a hot and humid climate, as well
as the broader conceptual challenge of modeling a long and complex history with statistical
methods that are relatively crude. It is clear that models of simple population divergence or
complete replacement do not fit the observed data. However, it is still an open question if the
marginally more realistic phylogenetic and admixture models currently being employed are
sufficient to characterize such complex population histories. It should go without saying that
conventional models of race provide no meaningful information on human evolutionary history.

9.11 | Further reading

Race and ancestry:
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● (Edge, Ramachandran, and Rosenberg 2022): Special theme issue celebrating 50 years
since Lewontin’s seminal work on “The Apportionment of Human Diversity”, including the
historic context, modern criticism, and ongoing challenges in the field.

● (Borrell et al. 2021): Perspective on the use of race and ancestry in clinical practice.
● (Lewis et al. 2022): Perspective on the use of continuous ancestry in genetic analyses.
● (Carlson et al. 2022): Perspective on effective visualizations of genetic ancestry.
● Visualizing Human Genetic Diversity: Interactive visualization of allele sharing across

populations.

Genetic ancestry methods:

● (Patterson, Price, and Reich 2006): Introduction to PCA/eigenanalysis of genetic data.
● (McVean 2009): Genealogical interpretation of PCA and implications for sampling and

simple admixed populations.
● (Lawson, van Dorp, and Falush 2018): Tutorial on model-based clustering / STRUCTURE

and examples of challenging identifiability.
● (Maier et al. 2023): Analyses of identifiability for parametric / admixture graph methods

and re-analysis of published graphs.

Ancient DNA:

● (Pickrell and Reich 2014): Early review and outlook on ancient DNA studies and human
migration/admixture.

● (Skoglund and Mathieson 2018): Review of the first decade of findings from ancient DNA.
● (Bergström et al. 2021): Review and perspective on the origins of humans.
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